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ABSTRACT: The minimum energy pathway contains Direct Pathway Dynamics Sampling

important information describing the transition between two
states on a potential energy surface (PES). Chain-of-states "
methods were developed to efficiently calculate minimum . W
energy pathways connecting two stable states. In the chain-of- :
states framework, a series of structures are generated and
optimized to represent the minimum energy pathway
connecting two states. However, multiple pathways may exist
connecting two existing states and should be identified to
obtain a full view of the transitions. Therefore, we developed an enhanced sampling method, named as the direct pathway
dynamics sampling (DPDS) method, to facilitate exploration of a PES for multiple pathways connecting two stable states as well
as addition minima and their associated transition pathways. In the DPDS method, molecular dynamics simulations are carried
out on the targeting PES within a chain-of-states framework to directly sample the transition pathway space. The simulations of
DPDS could be regulated by two parameters controlling distance among states along the pathway and smoothness of the
pathway. One advantage of the chain-of-states framework is that no specific reaction coordinates are necessary to generate the
reaction pathway, because such information is implicitly represented by the structures along the pathway. The chain-of-states
setup in a DPDS method greatly enhances the sufficient sampling in high-energy space between two end states, such as transition
states. By removing the constraint on the end states of the pathway, DPDS will also sample pathways connecting minima on a
PES in addition to the end points of the starting pathway. This feature makes DPDS an ideal method to directly explore
transition pathway space. Three examples demonstrate the efficiency of DPDS methods in sampling the high-energy area
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important for reactions on the PES.

1. INTRODUCTION

Sampling transition pathways that connect two states for a given
system are an important and active area of methodology
development in computational chemistry. Chain-of-states
methods were developed to obtain a minimum energy pathway
connecting two predefined states. Many chain-of-states methods
were developed to obtain minimum energy pathways." Elber and
Karplus first used a line integral representation of a discretized
path for optimization.” Following the same line of thinking,
nudged elastic band (NEB) methods were developed by
projecting out perpendicular components of elastic forces and
parallel components of the true force with respect to the path
under minimization.”* In zero temperature string (ZTS)
methods, the states along the transition pathway are evenly
distributed and re-distributed alqn§ the fitted path after each step
of minimization or simulation.”™ " It should be noted that the
ZTS method could automatically optimize end structures to local
minima, regardless of whether the starting pathway connects two
minima or not. Many variations of chain-of-states methods with
improved efliciency and accuracy have been developed
subsequently, but will not be covered in detail.”~"*

Due to the high number of degrees of freedom, the
convergence of chain-of-states methods can be slow in some
applications, especially for macromolecules. Therefore, speci-
alized chain-of-states methods were developed to generate
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reference reaction paths as a good approximation to the true
minimum energy pathway (MEP) with fast convergence rates.
For example, the replica path (RPATH) method implemented in
the CHARMM program package utilizes harmonic restraints of
both best-fit root-mean-square distances (RMSD) and meta-
angles defined by RMSD to control the distribution of replicas
along the pathway and the smoothness of the pathway."” In
addition to harmonic restraints, equal distance holonomic
constraints have also been implemented in CHARMM to
maintain an even distribution of replicas along the pathway
during the pathway optimization.'* Based on a recent benchmark
study, the MEP calculated by these reference pathway methods
are comparable with NEB results, but with a superior
convergence rate.”> Because of low computational cost, such
reference pathway methods could be used for extensive sampling
of pathways.

In addition to determining the MEP, sampling along the
pathway to estimate the transition free energy is also an active
area of methodology development. To obtain a sufficient
sampling around high-energy states for the accurate free energy
estimation, enhanced sampling methods were developed. While
not typically considered as an enhanced sampling method,
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umbrella sampling methods are arguably the most widely applied
methods to gain sufficient sampling in high-energy regions to
calculate a free e energy profile with regard to the predefined order
parameters.'®”"* Metadynamics methods do not sample toward
a specific transition pathway but, instead, discourage revisiting
already sampled states to promote exploration of other parts of a
potential energy surface (PES), including high-energy
states.””™>* Yang and co-workers proposed a minimum free
energy pathway method combined with hybrid quantum
mechanical and molecular mechanical free energy (QM/MM-
FE) methods to couple the optimization of the MEP of an
enzymatic reaction pathway using QM/MM methods with
sampling of the environment to obtain the most probable
reaction pathway.”* Transmon path sampling (TPS) methods
were first proposed by Pratt’® and much further developed by
Chandler and his collaborators.”’ ' Different from other
enhanced sampling methods, no specific reaction pathway
defined by a certain reaction coordinate is required in TPS
methods. In TPS methods, a large number of simulations are
carried out to sample the transitions between two target stable
states. To enhance the success rate of transitions in the
simulations, the TPS simulations often start from high-energy
states, which are preferably close to the transition state regions
between two states. Roux and co-workers combined string
methods with a large number of short simulations, which were
referred to as a swarm of trajectories, to identify the most
probable transition pathways between two stable states.”
Vanden-Eijnden and his co-workers further advanced the
reaction gathway sampling by proposing transition path theory
(TPT).>*~* In TPT, all the transition pathways connecting two
states are viewed as a part of a long trajectory, which samples both
states numerous times. The probability density function and
probability current function were proposed to measure the
transition between two end states in the TPT. Dominant reaction
path (DRP) methods were developed by Faccioli and co-workers
based on the Fokker—Planck equation to search for the transition
pathway with a minimum action potential.*' ~*°

In addition to the development of the transition pathway
optimization and enhanced sampling methods either targeting a
specific transition pathway or between two predefined states,
further methodology development is still necessary to explore
potential multiple transition pathways connecting two states and
detect additional minima on the PES of systems of interest and
their associated transition pathways. The chain-of-states frame-
work has been applied to sample the potentials of the mean force
along a reference pathway showing certain advantages over
related methods.*® In a similar vein, we proposed a new method
to combine the chain-of-states framework with molecular
dynamics (MD) simulations to directly sample the target PES
in the transition pathway space. We refer to this approach as the
direct pathway dynamics sampling (DPDS) method. The
remaining part of this work is organized as the following.
Computational framework and methods are described in section
2. Test of the DPDS method using three model systems is
presented in section 3. Both advantages and limitations of this
method are discussed in section 4. The contribution is concluded
in section S.

2. COMPUTATIONAL METHOD

2.1. Chain-of-States Representation of Reaction Path-
way. A transition pathway represented by a series of structures
on a PES is the basic representation of a simulation system. The
original chain-of-states algorithm was developed for energy
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optimization on a PES to characterize the MEP. The final MEP
from any given representation of a transition pathway is likely a
local MEP instead of the global one. Therefore, by combining the
chain-of-states framework with molecular dynamics simulations,
the sampling efficiency on a PES could be greatly enhanced. In a
chain-of-states framework, a series of structures described by
certain coordinates are constructed to represent a transition
pathway from one state to another. Cartesian coordinates are a
convenient option to generate and maintain replicas within a
chain-of-states framework. The distance between two states
(replicas) i and j, d”, can be defined as the following:'*"

le\zrl Wl(rli -
lw (1)

where N is the total number of atoms in the system, 7 is the
Cartesian coordinate of atom [ in the structure i, U7 is the rotation
matrix to superimpose the structure j over the structure i for least-
squares fitting between two structures, w; is the weight factor for
atom J, which includes atomic mass and additional factors.

In addition, any other appropriate reaction coordinates (RCs)
or collective variables (CVs) can also be employed to maintain
these replicas. The initial pathway can start with any state, and
the MEP is a reasonable starting point. The end replicas are
preferred to be two stable states as minima on the PES.

2.2, Restraints To Control Chain-of-States Pathways.
Restraints are used to maintain the distance between adjacent
states and prevent collapse of the pathway into a local minimum.
The harmonic potential using best-fit RMSD has been shown as
an effective metric to control the interstructure distance in the
optimization of the MEP within the chain-of-states framework.
The total potential energy associated with these added harmonic
potentials to control RMSD between adjacent replicas is defined

as the followingI 315
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where k,, is the harmonic force constant to restrain RMSD
distances between adjacent replicas along the reaction pathway,
d"*! is the best-fit RMSD between replica i and i + 1, d is the
average RMSD between adjacent replicas, and n is the total
number of replicas of the given pathway.

To control the smoothness of the sampling pathway, an
additional potential could be added to restrain the pseudoangle
between structures along the pathway:"*"*

Z kang(COSMAX — cos(6))? COSMAX > cos(6)

i=1
=0 COSMAX < cos(6)

®)
The pseudoangle 6, illustrated in Figure 1, describes the
smoothness of the pathway. The force constant k,,, controls the
smoothness of the pathway by keeping 6, from getting too small.
COSMAX is a cutoff value determining the value of cos(6;)
subjected to the control of pathway smoothness. Both pathway
RMSD and pseudoangle 6, controlling are 1mplemented in the
RPATH module of the CHARMM program package."

2.3. Molecular Dynamics Simulation within Chain-of-
States Formalism. The conventional application of chain-of-
states is to minimize the MEP, with the change of structures
along the pathway only to reduce either the total energy of the
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Figure 1. Illustration of angle €, around replica i + 1 in pathway control.
d"*!is the distance between replica i and i + 1. It is similar to d"*"** and

dii2

pathway when using restraints or forces perpendicular to the
pathway. To achieve the goal of enhancing sampling efficiency on
a PES, the dynamical propagation needs to be integrated with the
chain-of-states control. This integration is implemented through
adding pathway control forces, including distance potential and
angle potential, into the potential functions for dynamical
propagation. The force originating from the harmonic potential
based on the RMSD restraints applied on atom ! in structure i
with Cartesian coordinates as 7 is defined as

OE

rms

i
arl

i —
f msd,] ( 4)
Similarly, the force originating from the harmonic potential
applied to pseudoangle 6 associated with structures, i, i + 1, and i
+ 2, is calculated as

0E

ang
or| (3)

Both fi.; and f;;ngl are added to the force used for the MD
simulations integration scheme for atom [ in structure i. This
integration scheme was im;)lemented in CHARMM associated
with the RPATH module.”

2.4. Nudged Elastic Band. Although NEB methods were
originally developed to optimize the transition pathway on a PES
to obtain the MEP, it is also suitable for the current framework. In
the NEB methods, the forces along the pathway are projected
using the pathway tangent vector (7,).

i —
fang,l -

E=E +E
Fil = =VV(r)-(1 - 77)
Bl =

N
) = —v{lkz (Al - Kz)z]-(%)
2 3 (6)

where F{ and F! are the components of force that are
perpendicular and parallel to the tangent vector of replica i
(t,), respectively. Vis the potential energy function, and Al is the
distance between adjacent replicas.

2.5. Control of the Two End Replicas. The main goal of
conventional chain-of-states methods is to obtain an MEP
connecting two minima. In most cases, two minima are
characterized before obtaining the MEP connecting them. In
such situations, two predefined minima are set as two end
replicas on the initial chain-of-states setup and are constrained by
removing all its degrees of freedom during the optimization
process. Although restraint as harmonic potential can also be
employed to control the end replicas, constraint is used for
evaluating sampling efliciency of DPDS under the strict
condition.
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In DPDS applications, the end replicas could be handled
differently to enhance the sampling efficiency. Three different
ways to control the end replicas of the reaction pathway in DPDS
methods were tested. (1) Controlling two ends: two end replicas
in a chain-of-states setup are constrained similarly to the
conventional application of the chain-of-states optimization
toward the MEP. Therefore, the DPDS method will sample the
reaction pathway space specifically connecting two predefined
minima. (2) Controlling one end: only one end replica in a chain-
of-states setup is constrained during the DPDS. In this way, the
other end replica can potentially sample different space other
than the initial structure. This can provide sufficient flexibility to
the sampling system and allow additional minima to be identified
during the simulations. (3) Releasing two ends: none of the end
replicas in a chain-of-states setup is controlled by constraint
during the DPDS, giving the most flexibility in terms of sampling
the PES. In this way, the DPDS method can sample many
stationary structures on a PES and identify transition pathways
connecting these structures. In general, the DPDS method can be
considered as a four-dimensional (4D) sampling method with
the fourth dimension as transition pathway.

2.6. Clustering Analysis of Pathway Simulations. Similar
to the clustering analysis of different conformers of flexible
molecules, the transition pathways can also be subjected to
clustering analysis to identify distinctive pathways. Generalized
coordinates depending on the systems can be used for such
clustering analysis. For a nonlinear system with m atoms, there
canbe I (I € [1,3m — 6]) generalized coordinates {g,(R), g,(R),
.y §(R)} to be utilized to describe the transitions associated with
conformational and structural changes. R is the set of 3m
Cartesian coordinates (x, i = 1, 3m) of all m atoms in the system.
For meaningful comparison, the translational and rotational
degrees of freedom should be projected out in most cases. For
pathways comprising n structures with each structure described
as [ generalized coordinates, each structure i can be described by
its  generalized coordinates {g;;(R;), g2(R), g3(Ry), - £a(R)}; R
is the set of 3m Cartesian coordinates of structure i. Therefore, a
given pathway can be described by its pathway generalized
coordinates matrix:

gll(Rl) gu(Rl)

gnl(R”) gnl(R”)

For multiple pathways with the same number of structures,
these pathway generalized coordinate matrices can be collected
and subjected to vector quantization methods, such as k-means
clustering analysis. For the three testing models in this study,
different generalized coordinates were used to describe their
potential energy surfaces and transitions. The clustering analyses
were carried out using pathway generalized coordinate matrices
for each testing system.

2.7. Implementation of DPDS Method. The basic steps of
the DPDS method are outlined as a flowchart in Figure 2,
comprising three parts: initial pathway preparation, dynamics
pathway simulation, and final analysis. The goal of the
preparation part is to generate an appropriate transition path
representation as a starting point for the pathway dynamics
simulations. To achieve this goal, one can adapt a conventional
chain-of-states scheme to generate an MEP. Following this
approach, as illustrated in the flowchart, two structures
representing the start and end (for example reactant and
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[Initial start and end structures preparation]

v

[Generate initial pathway by linear interpolation ]

Chain-of-states optimization for
minimum energy pathway (MEP)

Molecular dynamics simulation of
chain-of-states (refraining two <
end structures) with k.,s and kg

Analysis of convergence by
chain-of-states MD sampling

Adjusting ks and K,g

Pathway
sampling
converged?

No

Yes
Release restraints or constraints on
either of both end structures

Analysis of convergence by
chain-of-states MD sampling

Adjusting boundary
condition

Pathway
sampling
converged?

Clustering analysis of total chain-of-states
MD sampling for multiple pathways

Final results

Figure 2. Flowchart for direct pathway dynamics sampling (DPDS)
method.

product) states of a transition process should be identified
initially. Then a series of structures connecting these two states
can be constructed through linear interpolation or other means
and be subjected to the chain-of-states pathway optimization to
obtain an approximate MEP.

The optimized pathway will then be subjected to the dynamics
simulations outlined in part two. If there is special interest in the
transition between two end replicas of the initial pathway, either
restraints (such as harmonic potential) or constraints (with these
two structures being treated as rigid bodies) could be applied on
these two end replicas during the simulations to prevent the
sampling from escaping these states. Using k., and k,,, as

controlling factors, molecular dynamics simulations can be
applied to the initial pathway to sample the transitions
connecting the initial two end states. Various analyses, including
using order parameters, k-means clustering, or advanced time—
structure independent component analysis, can be applied to
monitor the coverage of simulations and evaluate the
convergence of the simulations. If exploration of the potential
energy surface is desired to identify additional stationary states
and their associated transition pathways, the restraints or
constraints on either one or both end replicas can be removed
during the simulations to allow the sampling of the different area
on the potential energy surface. In addition, some adjustment of
kims and k,,, can also be applied during this part of the
simulations. The coverage of simulations should also be
monitored to estimate convergence of the simulations.

As the final analysis in part three, the clustering analysis should
be carried out on all the pathway simulations or some selected
part. k-means clustering algorithms can be applied for this
purpose. The clustering analysis will reveal all the distinctive
transition pathways sampled in the simulations that connect
either predefined or newly discovered stationary structures on
the target potential energy surface. If necessary, further
exploration or sampling can be carried out for any newly
identified transition pathway.

3. RESULTS

Three systems with different complexity and levels of theory
were employed to test the DPDS method.

3.1. Isomerization of Alanine Dipeptide. The first test
case is the isomerization of the alanine dipeptide (N-acetylalanyl-
N-methyl-amide). Two backbone dihedral angles (¢ and y) can
be used to describe the isomerization process of this molecule
(Figure 3A). An MEP was generated connecting two conformers
Cyeq and C,, corresponding to two minima on the PES (Figure
3B)."” The CHARMM 22 force field** with CMAP backbone
dihedral angle corrections® was used for the calculation. No
solvent molecule is present in the model system. The chain-of-
states calculations of the alanine dipeptide were carried out using
25 replicas. The barrier for the isomerization with reference to
conformer C,, is 8.74 kcal/mol. This MEP was used as the start
pathway in the following DPDS simulations.

The distribution of a 1 ys conventional MD simulation of the
alanine dipeptide is projected on the two-dimensional (2D)
surface defined by ¢p and y (Figure 3C). The sampling covers two
main attraction basins a and b circled by dashed lines in Figure
3C (basin b spreads to four corners of the plot as one single
basin). The term attraction basin refers to the region with
minimum free energy compared to adjacent regions. Apparently,
the area between two basins was not sampled efficiently at all,

(A) . 7] (B) Minimu

& D)

m Energy Pathway

0
¢ (degree)

Normal MD Simulation

@ (degree)

Figure 3. Alanine dipeptide as test case: (A) alanine dipeptide structure and two dihedral angles (¢) and i) as reaction coordinates; (B) initial minimum
energy pathway for alanine dipeptide isomerization; (C) distribution of conventional molecular dynamics simulations of alanine dipeptide on its
potential energy surface with reference to ¢ and y. Two main attraction basins are labeled as a and b.
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because every time the sampling changes from one basin to the
other basin, the transition process is transient without significant
sampling of the pathway connecting two basins.

3.1.1. RPATH/Restraints Using ks Only. To explore the
effect of k,,,,, on the sampling efficiency, k,,, was set to zero in the
simulations of this section. Using a chain-of-states pathway with
25 structures, with restraint of distance between adjacent
structures, the sampling was enhanced in various ways. With a
rather small k,,,; at 0.1 kcal/(mol-A?), the sampling of the smaller
attraction basin was significantly enhanced (Figure 4A). To save

(A) (B)

100
0 0
2 1
—100- -100
-100 0 100
¢ (degree) ¢ (degree)
(€ s 1000 (D)
£y
. 2
8 [
= 3]
= é
—100° o

-100 0
¢ (degree)

100

Time(ns)

Figure 4. DPDS simulations of alanine dipeptide with different k,,,, and
PES coverage of each simulation: (A) kyps = 0.1; (B) Ky = 100; (C) kg
=1000; (D) plot of PES coverage along the simulation time.

space, the unit for k,,,; (kcal/(mol-A%)) may not be presented in
the remaining of the text. Various transition regions were
sampled. However, the transition region between two basins was
not sampled sufficiently due to the small k,,,. With larger k,,,; of
100 and 1000, the sampling between basins including the
transition from the larger basin to itself was much enhanced
(Figure 4B,C). For the comparison of sampling efficiency, the
PES of alanine dipeptide was divided into 40,000 grid squares by
dividing both ¢ and y into 200 bins. The coverage of the surface
was estimated based on the distribution of sampling trajectories
among grid squares and plotted in Figure 4D. With k, ranging
between 0.1 and 10000, the coverage of the PES varies
significantly with k_,,, = 10 showing the most efficient sampling
(magenta line in Figure 4D). The samplings of k. as 1, 10, and
10000 did not show significant improvement of coverage on the
PES and are listed in Table S1 in the Supporting Information. It
should be noted that the two end replicas are constrained during
the direct pathway simulations described here and in sections
3.1.2 and 3.1.3.

3.1.2. RPATH/Restraints Using kg4 Another controlling
factor, k,y,, is also applied. To test effectiveness of k,,,, a rather
small k,,; of 0.1 kcal/(mol-A?) is used. The most effective Kang
values are 10, 100, and 1000 kcal/mol (Figure 5). To save space,
the unit for k,,, (kcal/mol) may not be presented in the
remainder of the text. Interestingly, different k,,, values led to the
significant enhancement of sampling in different transition
regions. With a k,,, value of 10 (Figure SA), the transition path
region connecting the same attraction basin b was extensively
sampled (circled by blue dashed line), and a novel transition path
region connecting two main attraction basins a and b was also
revealed (circled by red dashed line). With a kg value of 100, the
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Figure 5. DPDS simulations of alanine dipeptide with different k.,
(while k= 0.1 keal/(mol-A?)) and PES coverage of each simulation:
(A) kyng = 10 keal/mol; (B) k,,, = 100; (C) k,,, = 1000; (D) plot of PES
coverage along the simulation time.

transition path region covering the original MEP of alanine
dipeptide as the starting pathway of DPDS was extensively
sampled (Figure 5B, circled by red dashed line). With a larger k,,,q
value of 1000, a second transition path region parallel to the
starting pathway for DPDS (Figure 3B) was reached and
extensively sampled (Figure SC, circled by a red dashed line).
Using k,,, as the other controlling factor, different valleys for
transition pathways on the PES could be reached and sampled
extensively using the DPDS method. The samplings of k,,, as 0.1
and 1 did not show significant improvement of coverage on the
PES and are listed in Table S1 in the Supporting Information.
3.1.3. RPATH/Restraints Using Ky, and kg, Based on the
outcome of simulations testing k,, and k,,,, individually, different
combinations of k., and k,,, were used for alanine dipeptide
simulations to gain a better understanding of the efficiency of the
DPDS method. With k., as 10 and k,,, as 10, both transition
path regions connecting attraction basin b to itself and the one
connecting basins a and b were extensively sampled (Figure 64,

(B)

e 100

(A) 10 10 £y,

100§

@ @
& g
-100 " -100
-100 100
¢ (degree)
(C) 10 1, 1000
100 ; i

) (degree)

5 0 20 ER

¢ (degree) Time(ns)

Figure 6. DPDS simulations of alanine dipeptide with different k,,,
(while k,,, = 10) and PES coverage of each simulation to demonstrate
high efficiency of sampling: (A) kyug = 105 (B) kypg = 100; (C) kyp =
1000; (D) plot of PES coverage along the simulation time.
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circled by dashed lines). With k., as 10 and Kyng as 100, the
transition path region covering the original MEP as the starting
point of the simulation was extensively sampled (Figure 6B,
circled by a red dashed line), similar to the previous simulation
with the same k,,; but k., as 0.1 (Figure SB). However, different
from that case, the transition path region connecting the
attraction basin b to itself was also extensively sampled with k.
as 10 (Figure 6B, circled by a blue dashed line). Strikingly, with
kims as 10 and k,,,; as 1000, two transition pathway regions parallel
to each other and connecting attraction basins a and b were both
extensively sampled (Figure 6C, circled by dashed line). This
observation demonstrates DPDS as a powerful method to
explore and sample multiple transition pathway regions
connecting two states. Another interesting observation of the
sampling efficiency is that the PES coverage of the simulation
with k., as 100 (cyan line in Figure 6D) or 1000 (magenta line in
Figure 6D) have dramatic increases around 10 and 16 ns,
respectively. These sudden increases of coverage occurred
because pathway sampling switched to a different region on
the PES. To illustrate these jumps in the DPDS simulation from
one transition pathway region to a different region, the
distributions before and after the jumping are illustrated in
Figures 7 and 8 for these two simulations. The samplings with

(A) (B) 10 k,,, 100
' &
100" _ ]
@ [ 4 '3
£ { g
$ ¥ :
= =
~ —100; ~ —100 i
100 0 100 100 0 100
¢ (degree) ¢ (degree)

Figure 7. Switch of sampling between different transition pathway
regions during the DPDS simulations with k., = 10 and k,,, = 100: (A)
sampling during the first 10 ns; (B) sampling during the remaining 20 ns.

(A)

¥ (degree)

¢ (degree)

Figure 8. Switch of sampling between different transition pathway
regions during the DPDS simulations with k,,,,, = 10 and k,,,, = 1000: (A)

Tms ang

sampling during the first 16 ns; (B) sampling during the remaining 14 ns.

king as 0.1 and 1 did not show significant improvement of the
coverage on the PES and are listed in Table S1 in the Supporting
Information.

3.1.4. RPATH/Restraints with Removing Constraints on
Either One or Both Ends. For many systems, not only are
transition pathways unknown but also the minimum on the PES
or stable states are also unknown. It will be beneficial if DPDS
could help to search new minima while directly sampling the
transition pathway space. To use the DPDS method as a
potential tool to explore the PES, the constraints on either one or
both of the end replicas could be removed to allow the sampling
of the different states on the PES.

First, the constraint on replica number 25 (A25) was removed
for alanine dipeptide DPDS. Therefore, only replica number 1
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(Al) was constrained. Replica A25 is a minimum energy
structure in basin b and Al is a minimum energy structure in
basin a (Figure 3B). The coverage and sampling efficiency with
kims = 0.1 and k., = 10 are similar to the simulation with

constraints on both end replicas but with higher coverage
(34.5%; Figure 9A). However, with k.., = 10 and kg =10, DPDS

(A)

(B) 0 Ky, 10

1) (degree)

¢ (degree)

1000

o (degree)

-100
¢ (degree)

~100
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Figure 9. DPDS simulations of alanine dipeptide with constraint only on
replica Al with different k., and k,,, combinations: (A) k=01, Kang =
10; (B) krms =10, kang =10; (C) krms =10, kang =100; (D) krms =01, kang =
1000.

did not show improvement in either minimum sampling or PES
coverage (Figure 9B). With k,.,, = 10 and kg = 100, transition
pathway regions that connect basin b to itselt or basins a and b
were sampled extensively (Figure 9C). Interestingly, a new
transition pathway region connecting attraction basins a and b
through the top right corner of the PES was sampled with k., =
0.1 and k,,,, = 1000 simulation (Figure 9D, circled by red dashed
line). Various combinations of k,,; and kqng Were also tested with
constraint only on A2S with similar sampling coverage, and are
listed in Table S1 in the Supporting Information.

Second, the constraint on Al was removed for alanine
dipeptide DPDS. Therefore, only A2S was constrained. The
coverage and sampling efficiency with constrained A2S
combination of k;,, = 0.1 and k,,, = 10 (Figure 10A) and k,p
=10and k. = 10 (Figure 10B) are similar to the simulation with
constraint only on Al (Figure 9A,B). With k.., = 10 and k,, =
100, a new sampling pattern on the PES was observed (Figure
10C). However, with strong k..., (1000), the DPDS simulation
could be trapped in a local attraction basin when the constraint
on the Al replica is removed, ultimately leading to less efficient
sampling (Figure 10D). Various combinations of k,,; and Kang
were also tested with constraint only on Al with similar sampling
coverage, and are listed in Table S1 of the Supporting
Information.

Third, the constraints on both end replicas were removed for
alanine dipeptide DPDS. The coverage and sampling efficiency
with a combination of k,,,, = 0.1 and k,,; = 10 (Figure 11A) are
similar to the previous simulations without constraint on either
end replica, indicating that a weak k,,,; does not pull either end
replica out of attraction basins after removing the constraint
forces. With a combination of k,,; = 10 and k,,, = 10, both
minimum states and PES coverage are improved (Figure 11B).
Interestingly, with k.., = 10 and k,,,, = 100, basin a is much less

sampled compared to other samplings (Figure 11C). This is

Tms
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Figure 12. DPDS simulations of alanine dipeptide within nudged elastic
band (NEB) framework: (A) with constraints on both ends; (B) with
constraints only on replica Al; (C) with constraint only on replica A25;
(D) without constraint on either end replica.

because the pathway was trapped within basin b during this
simulation.

The above simulations show that, with a proper setup, the
sampling efficiency could be much improved. New transition
pathways could be discovered and sampled for further analysis.

3.1.5. NEB Results. Another popular chain-of-states method,
the NEB method, was also applied within the DPDS framework.
Both k;,, and k,,,, were applied to control the sampling efficiency.
With k., = 0.1 and k,,, = 100, the sampling showed the most
effective results. The sampling with constraints on both ends was
the most effective in finding the minimum and covering the PES
(Figure 12A). Two different transition pathway regions
connecting two attraction basins were detected and extensively
sampled. With constraint on either end replicas, the simulations
are similar to each other. The transition pathway region
connecting the attraction basin b to itself was detected and
extensively sampled in both simulations with constraints on
either end replica (Figure 12B,C). In the simulations without
constraints on either end replica, all the transition pathway
regions detected in the above three simulations were also
detected and extensively sampled (Figure 12D). All other DPDS
results using the NEB method are illustrated in Table S2 in the
Supporting Information.

3.1.6. Distinguished Pathways Identified through DPDS. All
the DPDS simulations carried out for the alanine dipeptide were
combined and subjected to clustering analysis to identify
distinguished transition pathways. The clustering analysis was
carried out using a density-based spatial clustering of application

with noise (DBSCAN) algorithm.*® For each pathway snapshot
containing 25 replicas sampled using the DPDS method, two
dihedral angles of alanine dipeptide in each replica leading to a
total of 50 dihedral angles for each pathway were used for the
clustering analysis. A cutoff of 200° was chosen for the ideal
results, in which a total of 17 clusters were generated. Among
these 17 clusters, nine clusters representing unique transition
pathways were identified and are listed in Figure 13. All 17
clusters are presented in Table S3 in the Supporting Information.
Pathway 1 represents transitions from attraction basin a to b. It
also has a loop structure within basin b (Figure 13A). Pathway 2
has a shape similar to that of pathway 1, but with significant
shifting toward attraction basin a (Figure 13B). In addition to the
transition pathways connecting attraction basins a and b,
pathway 3 presents another transition pathway that comes
from basin b going through basin a before going back to basin b
(Figure 13C). Pathway 4 represents a straight transition pathway
going through both attraction basins, with a loop within
attraction basin b (Figure 13D). Pathway S represents two new
transition pathways; one connects two attraction basins, and the
other one connects attraction basin b to itself (Figure 13E). The
major part of pathway 6 resides in attraction basin b with the
remaining part going through attraction basin a (Figure 13F).
However, the transition between the two attraction basins is
actually a false pathway, because it goes through an energy peak
by having two adjacent replicas residing on the two sides of the
peak with no replica in the high-energy area. This resulted from
the simulations with small k,,,.. Pathway 7 resides in attraction
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Figure 13. Unique transition pathways identified through clustering analysis of alanine dipeptide DPDS simulations. Nine among a total of 17 pathways
are listed. All 17 pathways are illustrated in Table S3 in the Supporting Information.

Scheme 1
2 S N11
N11 03 N
N O + H,0
H,N HO C1 \
C1
03
(A)4‘7 | IRC (B)4 i k.. 1000 k., 100 (C)4 " ko 10000 £, 1000
= ‘\ =_| # = &
=B iyl:.‘ =3}
8 B ’,.“‘_ S .\1" )
Byl T, 8,124

C1-N11(4)

C1-N11(4)

4
C1-N11(4)

Figure 14. Minimum energy pathways of intramolecular condensation of f-alanine reaction: (A) using intrinsic reaction coordinates; (B) using RPATH
method in CHARMM (k. = 1000, k,,, = 100); (C) using RPATH method in CHARMM (ks = 10000, k,,, = 1000).

basin b and with the transition pathway connecting basin b itself
(Figure 13G). Pathway 8 (Figure 13H) represents a transition
pathway connecting basin b, which is also represented in
pathways 5, 6, and 7, and the transition pathway connecting two
attraction basins, also seen in pathways 1 and 3. Pathway 9
(Figure 13I) represents an alternative pathway connecting
attraction basins a and b, which is similar to the one represented
in pathway 4. The aggregation of replicas was due to the small
k
significantly to this cluster.

The clustering analyses demonstrate the effectiveness of using
the DPDS method as a tool to sample multiple pathways on the
PES. With different combinations of controlling factors k,,; and
kang as well as constraints on the end replicas, the DPDS could
automatically sample multiple pathways, which provides valuable
information for complicated processes. Careful analyses are also

value used to carry out simulations that contribute

Tms
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essential to obtain information about unique reaction pathways
sampled in the simulations.

3.2. SCC-DFTB Reaction Pathway Sampling. The second
test case is the intramolecular condensation reaction of $-alanine,
a simple organic reaction (Scheme 1). Despite its apparent
chemical simplicity, this reaction presents a real challenge for
pathway sampling with two chemical bonds forming and two
chemical bonds breaking simultaneously. The MEP connecting
the reactant and product was constructed using the intrinsic
reaction coordinate (IRC) method.*" Its distribution on the PES
is illustrated in Figure 14A. The lengths of two key bonds,
carbon—oxygen (C1—03) and carbon—nitrogen (C1—N11),
are used as reaction coordinates to construct the PES. The actual
transition state identified from a separate quantum mechanical
calculation was also plotted as a red dot along the MEP. The
MEPs connecting reactant and product were also constructed
using RPATH, the chain-of-states method implemented in
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CHARMM (Figure 14B,C). The energy barrier from the IRC
calculation is around 47.268 kcal/mol for this reaction.

3.2.1. DPDS with Combining ks and kgpg. Using chain-of-
states with 20 structures along the pathway, different
combinations of k;,, and k,,, were used to carry out DPDS for
this reaction. Self-consistent charge density functional tight
binding (SCC-DFTB) was shown to reproduce energetic results
similar to those obtained from B3LYP/6-31+G(d,p) level of
theory.”” Therefore, the SCC-DFTB method*>* was applied for
all DPDS simulations of this reaction. DFTB3 mio parameters
with third order correction were used for the calculation.” No
dispersion correction was employed in the current study. The
Anderson mixing scheme was used in SCF iterations. The
convergence criterion for the SCF cycle was set to be 10~. For
each combination of k., and k,y,, values, DPDS were carried out
at 300 K for 1 ns using a 1 fs time step.

First, the constraints were applied on both end replicas during
the simulations. The simulations demonstrated that large k.,
and particularly large k,,, values were necessary to enhance the
sampling along the pathway, especially the region close to the
transition state region (Figure 15). With k,,, smaller than 100, no

ang
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: : (B)
10 s 1000 ki 100
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Figure 15. Simulation of intramolecular condensation of p-alanine
reaction using DPDS method. Constraints were applied on both end
replicas: (A) k,,,, = 1000, k,,, = 100; (B) k,, = 10000, k,,, = 100; (C)
kyms = 1000, k., = 1000; (D) k... = 10000, K g = 1000.

ang

apparent enhanced sampling was observed. With larger k., and
k. the sampling along the pathway was much enhanced (Figure

ang!
1SA—C). The most effective combination to sample the
transition pathways of this system is k,,, = 10000 and k,,, =

1000 (Figure 15D). The DPDS is evenly distributed along the
pathway with extensive sampling throughout the pathway
connecting two minimum states.

3.2.2. DPDS with Removing Constraint on Either One or
Both Ends. When the constraint on A20 (product; see Figure 14)
was removed leaving constraint only on Al, with k. = 100 and
king = 1000, the sampling in the product region was extended
toward large C1—O3 distances significantly (Figure 16A). The
reason for this is due to the escaping of the water molecule as a
product away from the S-lactam ring product. With k,,, = 1000
and k,,,, = 1000, the sampling is better controlled with enhanced
sampling along the pathway (Figure 16B).

When the constraint on Al (reactant; see Figure 14) was
removed leaving constraint only on A20, the sampling in the

reactant region was much extended (Figure 16C). With
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combinations of large k., and ki, (ks = 1000 and King =
1000) and (ks = 10000 and k,,, = 1000), the sampling along the
pathway was also enhanced (Figure 16C,D). When the
constraints on both Al and A20 were removed, the sampling
in the reactant region was also much extended with a
combination of large k,,, = 1000 and k,,, = 1000 (Figure
16E). With k. = 10000 and kqng = 1000, the sampling along the
pathway is much enhanced without constraints on either end
replicas (Figure 16F).

3.3. f-Hairpin. As a third example, a more complex system of
P-hairpin peptide folding was used to test sampling efficiency of
DPDS method.”**” The sequence of the peptide is GEWTYD-
DATKTFTVTE. The fold structure was obtained from a
crystallographic structure available from the protein data
bank®® (PDB code 3GB1, residues 41—56). An extended
structure of this peptide was generated using CHARMM.*” To
better evaluate and compare the sampling efficiency, the overall
distribution of peptide conformation was generated based on all
the obtained sampling and used as a background for distribution
plots in this section. To build an overall distribution, a Markov
state method, MSMbuilder,”® was used to calculate dihedral
angles along the backbone of the peptide for each structure.
Then, time—structure independent component analysis (tICA)
implemented in MSMbuilder was applied on all simulations of
the peptide. The first two dominant components tICAl and
tICA2 were used to plot the overall distribution of S-hairpin
simulations. A k-means clustering method was used to cluster the
overall distribution into 11 clusters (Figure 17). Based on the
nature of these clusters, we divided those clusters into three
groups: f-hairpin (fold region), unfold region, and misfold
region (Figure 17).

Two conventional MD simulations starting from either the
fold structure or an extended structure were carried out for 1 ps.
The simulation starting from the extended structure was trapped
in cluster 4 with presence in clusters 2 and 6 in the misfold region
(Figure 18A). On the other hand, the simulation starting from
the fold structure was mainly distributed in clusters 3 and 9 in
both the fold and unfold regions (Figure 18B).

An MEP was generated with 25 replicas connecting the
extended and fold conformations (Figure 18C). The DPDS was
carried out starting from this MEP with different k., and k,,,
combinations and two end replicas being constrained. The
distribution of each simulation is illustrated in Table S4 in the
Supporting Information. Clustering analysis using k-means
clustering algorithm60 was carried out, and divided simulations
with the same control of end replicas together into 10 clusters.
For the DPDS with two end replicas being constrained, four out
of 10 pathways (PAl to PA4) are illustrated in Figure 19.
Pathway PA1 demonstrates a smooth transition through a series
of unfold clusters and fold clusters (5, 7, 10, 11,9, and 1) (Figure
19A). Another slightly different pathway PA2 goes through
clusters 2 and 8 instead of cluster 7 before cluster 3 (5,2, 8,3, 11,
9, and 1) (Figure 19B). Pathway PA3 actually starts in cluster 2
with extensive sampling and goes through a misfold cluster 6 (2,
6, 8, 3, 9, and 1; Figure 19C). These three clusters represent
smooth transition channels between two end states through
different clusters. Pathway PA4 represents a stochastic transition
between two end states. With switching back and forth, this
pathway samples clusters S, 2, 6, 8,7, 10, 11, 3,9, and 1 (Figure
19D). Several other pathways are similar to pathway PA4 (Table
SS in Supporting Information). The uneven distribution shown
in pathway PA4 could result from a weak k,;; that contributes to
this cluster.
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Figure 16. DPDS simulations of intramolecular condensation of $-alanine reaction with removed constraint on end replicas and different combinations
of king and Kyt (A) constraint only on replica Al k,,,, = 100, K,sg = 1000; (B) constraint only on replica Al, k,,; = 1000, kqng = 1000; (C) constraint only
on replica A20, k= 1000, k,,,, = 1000; (D) constraint only on replica A20, k,,,,, = 10000, kg = 1000; (E) no constraints, k.., = 1000, k,g = 1000; (F) no
constraint, k., = 10000, k,,, = 1000.

represents transition through clusters 5,2, 6,8, 3,9, and 1 (Figure

) Bv unf 01‘1 20A). Pathway PB2 (Figure 20B) is similar to pathway PA2
(Figure 19B) with end replica A25 remaining in cluster 1. In

- - pathway PB3, end replica 25 migrates to cluster 9. Pathway PB3
< 0 Vi < (8] ” S (j FF has uneven distribution and goes through clusters S, 2, 7,10, 11, 9,
J [ﬂt’ i 2N (1] > and 1 and ends within cluster 9 (Figure 20C). End replica 25 also
+ ) \ migrates to cluster 9 in pathway PB4, which goes thzough cluster)s
- 5,2,10,7,8,6,3,11, 1,and 9 in a zigzag pattern (Figure 20D).
mis f (/] lg 4 13 ﬁ-h all’ pln When the constraint on replica 1 1% r;gnfoved, DP]§S displays

4 much more diversity than the above samplings. Pathway PC1

- 2 1 0 1 (Figure 21A) starts with replica 1 in cluster 2 as a misfold
tICA 1 structure and goes through clusters 8, 3, 11, 9, and 1, similar to

part of pathway PA2 (Figure 19B). Pathway PC2 (Figure 21B)

Figure 17. Overall conformational distribution and cluster analysis of - has replica 1 remaining in cluster S and half of it similar to

hairpin peptide based on all DPDS and 1 us conventional molecular
dynamics (MD) simulations of fold/unfold states. A total of 11 clusters
are identified with representative conformers illustrated.

pathway PC1. Pathway PC3 (Figure 21C) starts with replica 1 in
cluster 2, goes through clusters S and 6, and leads to a second half
similar to pathway PC1. In pathways PC4, PCS, and PC6, replica
1 samples different part of clusters 6 and 4 as misfold regions
Four representative pathways (PB1 to PB4) are illustrated in (Figure 21D—F). All three pathways have zigzag patterns, and go

Figure 20 among 10 clusters generated from simulations without through the unfold region before reaching the fold region.

constraining the fold end replica (labeled as A25). In pathway ‘When constraints on both end replicas were removed, DPDS

PB1, end replica A2S remains in cluster 1. This pathway did not present much more diverse pathways (Figure 22).
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Figure 18. Distributions of conventional MD simulations staring from either an extended or fold conformation and initial minimum energy pathway:
(A) MD simulations staring from extended conformation; (B) MD simulations staring from a folded conformation; (C) minimum energy pathway.
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Figure 19. Clusters and four representative pathways (PAl through
PA4) of f-hairpin based on DPDS simulations with constraints on both
end replicas (Al and A25).
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Figure 20. Clusters and their representative pathways of #-hairpin based
on DPDS with constraint only on replica 1.

Pathway PD1 (Figure 22A) is similar to previous pathways, such
as PB2. Pathway PD2 (Figure 22B) is very similar to pathway
PC1. Pathway PD3 (Figure 22C) starts in cluster 2 and goes
through cluster 6, both in the misfold region, before going
through the unfold region and reaching the fold region. The end
replica 25 in pathway PD3 is rather close to cluster 3 in the unfold
region. Pathways PD4, PDS, and PD6 are zigzag pathways with
replica 1 heavily sampling the misfold region (Figure 22D—F).

From the sampling, it seems to be extremely unlikely that
misfold states of this f-hairpin can directly change to the fold
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states. All the simulations presented in this study indicate that the
misfold states need to unfold first before reaching the fold states.

3.4. Comparison with the Transition Path Sampling
Method. For comparison, another pathway sampling method,
the TPS method,”" implemented in CHARMM was applied on
alanine dipeptide isomerization and B-hairpin peptide folding.
To apply the TPS method, two attraction basins and an
appropriate start geometry for successful shooting trajectories
are required. In TPS method, new transition pathways are
generated from old pathways through shooting and shifting
algorithms.62 In the shooting algorithm, a random frame in the
old pathway is selected and modified by adding a random
momentum perturbation. MD simulations are carried out from
the selected frame along the new velocities in both forward and
backward directions in time to generate a new transition
pathway. In the shifting algorithm, a random frame and its atomic
velocities in the old pathway are selected. MD simulations are
carried out from the selected frame and velocities in either
forward or backward directions in time to generate a new
transition pathway with the same length as the old one, effectively
shifting the old pathway either forward or backward in time. The
shifting algorithm is complementary to the shooting algorithm.
Although the new pathways overlap with the old pathway,
shifting moves will improve the convergence of transition path
sampling.” Successful shooting trajectories are those simulations
starting from the start geometry that connects two attraction
basins. Normally structures similar to the transition state could
serve as the start geometry leading to successful shooting
trajectories.

For alanine dipeptide, two attraction basins a and b are defined
based on the dihedral angles used as reaction coordinates. To
ensure sufficient TPS sampling, these two basins need to be
defined relatively large (for a, ¢»(40°,100°) and y(—150°,25°),
blue rectangle in Figure 23A; for b, ¢(—170°—50°) and
w(—=50°,170°), red rectangle in Figure 23A). After some initial
tests, an appropriate start geometry of alanine dipeptide was
identified. Starting from this initial geometry, a total of 1,000,000
shooting pathways each as 2 ps long were carried out. The
shooting and shifting movement ratio was chosen as 9:1 for
optimal sampling efficiency. The acceptance rate is about 9% for
shooting movement and 90% for pathway shifting movement.
The TPS simulations of alanine dipeptide lead to good coverage
of the potential energy surface with 72% coverage (Figure 23A).
Although most major transition pathways connecting basins a
and b were sampled, one transition pathway between two basins
was not detected by these otherwise comprehensive simulations.

For the S-hairpin, the attraction basins were defined using two
structural order parameters, one as distance d between & carbons
of two terminal residues (Glyl and Glul6) and the other one as
angle 0 defined by Glyl, Ala8, and Glul6 & carbons (with Ala8 as
the vertex). The two attraction basins were defined as fold
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Figure 21. Clusters and their representative pathways of f-hairpin based on DPDS with constraint only on replica A2S.
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Figure 22. Clusters and their representative pathways of f-hairpin based on DPDS without constraint on end replicas.
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Figure 23. Transition path sampling (TPS) results: (A) alanine dipeptide isomerization (two attraction basins defined for the setup of TPS method
illustrated in rectangles); (B) f-hairpin folding. The attracting basins for the TPS method are defined using order parameters different from tICA

coordinates used in this plot and, thus, could not be illustrated.

(d(0.0A,8.0A), @ (0°45°)) and unfold (d(22.0A,40.04), 6
(70°,180°)). Although there are different means to define
attraction basins more relevant to folding, the above order
parameters were chosen for the purpose of interpretation and
implementation. The replica number 13 from the minimum
energy pathway of f-hairpin folding was chosen as the initial
geometry for TPS simulations. Starting from this geometry, a
total of 1,000,000 shooting pathways each as 10 ps long were
carried out. Longer trajectories are necessary for shooting
simulations to reach both attraction basins. The shooting and
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pathway shifting movement ratio was chosen as 9:1 for optimal
sampling efficiency. Similar to the alanine dipeptide case, the
acceptance rate is about 9% for shooting movement and 90% for
pathway shifting movement. The TPS simulations mainly cover
unfold regions, part of the misfold region, and a very small part of
the fold region (Figure 23B). The lack of coverage on the folded
structures is due to the quick termination of the shooting
trajectories when reaching an attraction basin representing
folded structures.
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In the above TPS simulations, the shooting trajectories can be
up to a certain length (2 ps for alanine dipeptide and 10 ps for -
hairpin), but the length of each trajectory varies significantly.
Therefore, it is not convenient to carry out the pathway
clustering analysis. The plots of the TPS simulations on the
potential energy surfaces of these two systems could be
compared with the DPDS. For the simple alanine dipeptide
case, the TPS simulations provided sufficient coverage on the
PES, but missed a key transition pathway. For the S-hairpin, the
TPS simulations only cover a portion of the regions sampled by
the DPDS simulations.

4. DISCUSSION

In this study, we developed and tested the DPDS method as a
new approach for direct sampling in the transition pathway space.
Through the analyses of three test cases, the DPDS method
demonstrates certain advantages. The chain-of-states setup of the
method ensures the sampling of transition pathway on the PES of
the target systems. This could greatly enhance the sampling
efficiency when the main goal of sampling is exploring feasible
transition pathways connecting multiple minimum states. The
DPDS method is compatible with most chain-of-states methods,
such as nudged elastic band and string methods. Another
advantage of the DPDS method is that minimum knowledge
about the pathways on the target PES is required a priori. In
addition, the dynamical sampling increases the probability of the
sampling to reach high-energy barrier transition pathways even
starting with the global minimum energy pathway. By removing
constraints or restraints on either or both end replicas, the DPDS
could reach any transition pathway on a PES.

However, it should be emphasized that, like all other enhanced
sampling methods, it is not guaranteed that DPDS can exhaust all
the feasible pathways even with long simulation time. Therefore,
the use of parameters k., and k,,; provides additional control of
DPDS to reach different transition pathways. With small k,,, and
kqng the sampling will favor low-energy space. By increasing kg,
one could obtain the sampling more faithful to the actual
transition pathways. On the other hand, by increasing k,,,, the
DPDS is more likely to switch to and detect multiple transition
pathways. When testing the different combinations of k., and
kqng the DPDS of alanine dipeptide isomerization exhausts all the
major transition pathways identified on its PES.% Analyzing
DPDS results to obtain transition pathway information is
relatively easy, because each snapshot of the sampling is a
transition pathway itself. Clustering analysis of DPDS results will
directly lead to multiple transition pathways connecting multiple
minima on the targeting PES. However, one should be cautious
about applying high k,,,, in DPDS, because high k., will force
smoothing of the transition pathway and lead to high-energy
barriers.

One may be concerned about the dependence of the DPDS
sampling on the initial pathway. Therefore, an MEP (Figure
24A) different from the one used in the DPDS simulation of
alanine dipeptide was employed as the initial pathway and
subjected to three DPDS simulations using optimal combina-
tions of k,,,; and k,,, parameters. The simulation with k,,,; = 10
and k,,, = 10 (Figure 24B) starting from this MEP is similar to
the simulation starting from the original MEP with the same k.
and k,,,, (Figure 6A). The simulation with k,,,;= 10 and k,,, = 100
does sample the transition region between attraction basins a and
b (circled region in Figure 24C) where the original MEP is
located. Although the simulation with k., = 10 and k,,, = 1000
presents unique coverage on the PES (Figure 24D), the pathways
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Figure 24. DPDS simulations of alanine dipeptide with an alternative
start pathway: (A) alternative initial pathway (both Al and A2S as two
end replicas constrained during the simulation; different k,,; and k.,
combinations); (B) kyys = 10, kyy, = 10; (C) kyp = 10, k. = 100; (D)

Kygns = 10, K,pq = 1000.
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sampled in this simulation were also sampled in the DPDS with
constraint on replica Al (Figure 8C,D). This suggests that the
dependence of DPDS on the start pathway is not significant.

Because of the convenience of the setup, DPDS can be easily
applied with QM/MM methods to sample chemical reaction
pathways. The sampling of intramolecular condensation reaction
of f-alanine using the DPDS method indicates that high k., and
kqng are necessary for sufficient sampling of chemical reactions.
This is due to the inherent high-energy barrier of chemical
reactions, which requires large force to maintain even
distribution along the pathway. Another popular sampling
method along the chemical reaction pathway is the umbrella
sampling. In an umbrella sampling method, harmonic potentials
using order parameters or collective variables are implemented
for sampling windows to force the simulations of certain regions.
Using DPDS method, one has the flexibility through different
weighting factors to control the RMSD distance between
replicas. The umbrella sampling is often combined with the
weighted histogram analysis method (WHAM) to obtain free
energy information along the sampling windows. By obtaining
enhanced sampling along multiple pathways, the DPDS method
can also be used to estimate free energy information on the
targeting PES. This is under development for future publication.

The DPDS method could be the most effective to search for
transition pathways of a complicated system as demonstrated by
the f-hairpin peptide in this study. Many complicated
biomolecular processes, such as protein folding, ligand binding,
and protein—protein binding, do not have convenient order
parameters or collective variables to describe the processes as
transition pathways. This could be resolved by the DPDS
method through sampling transition pathways connecting two
end states, which can be unfold/fold proteins or protein
unbound/bound with its binding partners. Without defining
specific order parameters, DPDS could potentially detect the
most probable transition pathways connecting two end states
and explore multiple transition pathways. Again, different
combinations of k., and k,,; can be an effective means to
drive sampling among different transition pathways.

Based on the flexibility from the combinations of k., and kg
DPDS simulations could be carried out with different emphases.
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On one hand, with low k., and k,,, values, the simulations will
sample the attraction basins with moderate increasing coverage
of the transition region as shown in Figure 4. These simulations
could be utilized to detect and sample attraction basins. On the
other hand, larger k., and k,y,, values will enhance the detection
and sampling of transition pathway regions as shown in Figures 5
and 6. For complex systems, as demonstrated by the $-hairpin in
this study, the DPDS simulations with different combinations of
kims and k,,, are useful to explore the potential energy surface
closely related to the transition processes of interest. These
simulations will provide not only the information about potential
attraction basins but the transition pathways connecting these
basins as well. Although transition pathways sampled in DPDS
simulations are not minimum energy pathways, the representa-
tive pathways generated from clustering analyses can be
subjected to further optimization to obtain minimum energy
pathways.

Although the TPS method could be powerful to sample the
transition pathway space for a simple system as demonstrated by
alanine dipeptide, the efficient application of this method for
complex systems is challenging and requires the careful setup of
the simulations. In the M-hairpin peptide case, the TPS
simulations only sampled a portion of the overall sampling
space from the DPDS simulations. This is because TPS is limited
to two predefined attraction basins, which are used as criteria to
terminate the simulations. Although the shifting movement of
TPS could help to enhance the sampling efficiency, these
termination criteria still limit the sampling efficiency of new
minima or attraction basins. The DPDS simulations, especially
when removing restraints or constraints on both or either end
replicas, could greatly enhance the detection and the sampling of
new minimum or attraction basins for complex systems.

There is also a benefit for the computational cost of DPDS
method in terms of sampling the high-energy regions along
transition pathways. Comparing to the TPS method, it is not
necessary to choose an appropriate initial geometry a priori for
shooting simulations in DPDS method. Because of the chain-of-
states framework, the “acceptance” rate for transition pathways in
DPDS simulations is 100% compared to the 9% acceptance rate
of shooting trajectories in the TPS simulations for the two test
cases in this study, even after our best effort to fine-tune the TPS
simulations. It should be noted that our experience of using the
TPS method is limited, and it is likely that a better setup could
lead to a higher acceptance rate. Nevertheless, the setup for high
sampling efficiency of transition pathways could prevent effective
application of the TPS method especially for complex systems. In
general, the convenience of the setup within the chain-of-states
framework in DPDS will help to generate sufficient coverage of
transition pathway regions and to explore the potential energy
surface for additional attraction basins.

Similar to many other enhanced simulation methods, there is
no foolproof way to guarantee the convergence of the DPDS
simulations. However, one still could have a good idea about the
converging trend of the simulations. To evaluate the convergence
of DPDS simulations, one of the key factors is selecting
appropriate generalized coordinates for distribution plots. This
would be relatively easy for simple cases, such as the alanine
dipeptide isomerization and the f-alanine intramolecular
condensation reaction tested in this study. For complex systems
with high degrees of freedom, appropriate dimension reduction
will be necessary and critical. It was shown in this and several
other studies®* % that time—structure independent component
analysis can be very effective to construct generalized coordinates
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to be used to plot the distribution of dynamics simulations. The
distribution of accumulated DPDS simulations projected on the
suitable generalized coordinates will be an effective tool for not
only monitoring the convergence of the simulations but also
identifying unique transition pathways through clustering
analysis.

5. CONCLUSION

In this study, we developed a direct pathway dynamics sampling
(DPDS) method for efficient sampling of a potential energy
surface and exploring transition pathways. Two parameters k,
and k,,, could be implemented for effective controlling of
pathway sampling. Sampling with small k..., and k,,,, will favor a
low-energy space, similar to conventional molecular dynamics
sampling. Higher k,; will lead to enhanced sampling along the
pathway with decreasing distances among replicas. Higher k,,

will smoothen the pathway and increase the likelihood for the
simulation to switch to new transition pathways. Using different
combinations of k,,,; and k,,,, the DPDS method can sample the
majority of the PES important for transitions and detect multiple
pathways, which would not be easily obtained and analyzed
otherwise. The convenience of setup and analysis of DPDS
results for transition pathway information makes this method an
ideal option for transition pathway sampling related to
biomolecules, such as proteins. Using RMSD combining with
weight factors, complex processes such as f-hairpin peptide
folding were efficiently sampled and multiple folding pathways
were identified. In summary, the DPDS method provides a
simple and effective means to directly sample transition pathways
for complex systems and can be easily combined with various
levels of theory.
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