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ABSTRACT: Dimensionality reduction methods are usually applied on
molecular dynamics simulations of macromolecules for analysis and
visualization purposes. It is normally desired that suitable dimensionality
reduction methods could clearly distinguish functionally important states
with different conformations for the systems of interest. However, common
dimensionality reduction methods for macromolecules simulations, includ-
ing predefined order parameters and collective variables (CVs), principal
component analysis (PCA), and time-structure based independent
component analysis (t-ICA), only have limited success due to significant
key structural information loss. Here, we introduced the t-distributed
stochastic neighbor embedding (t-SNE) method as a dimensionality
reduction method with minimum structural information loss widely used
in bioinformatics for analyses of macromolecules, especially biomacromo-
lecules simulations. It is demonstrated that both one-dimensional (1D) and two-dimensional (2D) models of the t-SNE method
are superior to distinguish important functional states of a model allosteric protein system for free energy and mechanistic
analysis. Projections of the model protein simulations onto 1D and 2D t-SNE surfaces provide both clear visual cues and
quantitative information, which is not readily available using other methods, regarding the transition mechanism between two
important functional states of this protein.

■ INTRODUCTION
Molecular dynamics (MD) simulations have been widely
applied on macromolecules, especially biomacromolecules to
provide atomistic insights into their structure−function
relations.1 Those insights are unattainable by most exper-
imental approaches. Recently, with the significant improve-
ment of computational powers due to graphical processing
units (GPUs), the simulated time scale for all-atom MD
simulations has been extended from nanoseconds to milli-
seconds scales.2,3 Long-time MD simulations can provide
meaningful predictions and insights into the mechanism of
protein functions, because the slow time scale motions in
dynamics are critical for protein functions.4 However,
biomacromolecules including proteins normally have hundreds
to thousands of degrees of freedom. The curse of
dimensionality5 induces the difficulties for many analyses of
long-time MD simulations, including extracting the important
essential motions,6 clustering different states based on kinetics
or structures,7,8 visualization of the free energy landscape,
etc.9,10 These analyses could retrieve the important informa-
tion from the simulation data and provide insights into the
protein function-related dynamics. Therefore, an effective low-
dimensional description of MD simulations could be beneficial
in many cases.
Geometrically, appropriate low-dimensional descriptors

could be developed based on the assumption that the dynamics
of protein in a long time scale simulation can be modeled by
several slow modes.11 Some theoretical studies support this

assumption with regard to protein dynamics, which can be
modeled by Markov state models (MSMs) based on their
Markovian property.8,12 In many cases, describing important
dynamics using several predefined collective variables (CVs) is
an efficient approach.13 Those CVs are also referred to as the
reaction coordinates for rare events including chemical
reactions. However, defining the CVs to quantify protein
dynamics is more complicated than chemical reactions.13

Compared with small molecules, proteins have higher
dimensionality, and inappropriate CVs could disguise protein
kinetic barriers.14 Valid CVs should be suitable to capture key
dynamical events in simulations in order to obtain meaningful
insight. Natural contacts,15 root-mean-square deviations
(RMSDs), radius of gyration (Rg),16 and structural reaction
coordinates including P and Q values17 are all possible CVs
and suitable to describe the protein dynamics from different
perspectives.
Some dimensionality reduction methods can be applied on

an ensemble of configurations to obtain appropriate low-
dimensional descriptors for key protein dynamics. Without
predefined CVs, these methods reconstruct the coordinates
based on the geometrical high-dimensional properties of the
system18 and are normally categorized as either linear or
nonlinear.19,20 The coordinates employed in the linear
dimensionality reduction methods are linear combinations of
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input variables, including principal component analysis (PCA),
also referred to as quasi-harmonic analysis in MD simu-
lations,21 and time-structure based independent component
analysis (t-ICA).4 Nonlinear dimensionality reduction meth-
ods construct coordinates as a nonlinear function of the input
variables, including diffusion map,22 isomap,20 autoencode
neural networks,23 etc. A thorough comparison for diffusion
map,22 isomap,20 the locally linear embedding (LLE)
method,19 and PCA was reported in a previous study.24 In
general, nonlinear dimensionality reduction methods are more
suitable than the linear ones for systems with dynamics lying
on highly curved and convoluted manifolds.25

These methods can be applied on biomacromolecules to
obtain suitable descriptors for further analyses including free
energy surface plotting. However, structural information loss is
inevitable in dimensionality reduction processes. Different
methods preserve different structural information through
projections. For example, PCA can maximize the variance for
each component, and t-ICA maximizes the time-lagged auto
correlation for a given lag time.26 Previous studies suggest that
t-ICA has better performance than PCA for extracting the
slowest dynamical modes.27,28 However, because these
methods are not designed to maintain the similarity between
high-dimensional data and low-dimensional descriptors, the
clusters of high-dimensional structures are usually not well
characterized by the projected representations. For example,
the k-means clustering method29 using Cartesian coordinates
could overlap significantly in PCA projection surface. In
addition, projection onto low-dimensional surfaces could lead
to inappropriate clustering analysis of simulation data, because
inadequate projections could hide the important kinetic
barriers, and result in incorrect thermodynamics calculations.30

One state-of-the-art method to reduce the dimensionality
while maintaining the similarity between low-dimensional
descriptors and high-dimensional data is the t-distributed
Stochastic Neighbor Embedding (t-SNE) method.31 In the t-
SNE method, Gaussian probability distributions over high-
dimensional space are constructed and used to optimize a
Student t-distribution in low-dimensional space. The low-
dimensional embedding descriptors can be obtained by
minimizing the Kullback−Leibler divergence32 between the
distributions on high- and low-dimensional spaces using a
gradient descent algorithm. In the t-SNE method, the low-
dimensional space maintains the pair-wised similarity to the
high-dimensional space, leading to a clustering on the
embedding space close to the clustering in the high-
dimensional space without losing significant structural
information. This method has been widely applied in
bioinformatics,33 such as gene expression analysis,34 single-
cell visualization,35 and cell types detections.36

With some promising development,37,38 the t-SNE method
could be applied to investigate protein dynamics and clustering
protein structures and visualize free energy surfaces. In this
study, the t-SNE method is demonstrated as an excellent
dimensionality reduction algorithm for protein simulations and
should be applicable to other biomacromolecules in general.
Vivid (VVD) is a photosensitive circadian clock protein
belonging to the Light-Oxygen-Voltage (LOV) domain.39

Upon blue light activation, a covalent bond is formed between
residue Cys108 and the cofactor flavin adenine dinucleotide
(FAD) in VVD and leads to two distinct states (referred to as
dark and light states) with significant conformational changes
mainly involving its N-terminus.39,40 Up to now, the

mechanism, in which the formation of the above covalent
bond leads to global conformational change in VVD, is still
elusive. Following population shift hypothesis,41,42 the t-SNE
method is applied to construct low-dimensional descriptors to
faithfully represent the free energy landscape of VVD related to
the switching between the dark and light states. Combining
with the clustering analysis and the time-resolved fitting
analysis, the dynamics of trajectories can be tracked on the t-
SNE projection surface. In this study, we demonstrate t-SNE as
a superior dimensionality reduction method for MD simulation
analysis through comparison with other methods. The
exceptional performance of the t-SNE method validates it as
a faithful method to probe the free energy landscape correlated
to protein functions.

■ METHODOLOGY
Molecular Dynamics Simulation. The initial structures

of the dark and light states of VVD were obtained from the
Protein Data Bank (PDB)43 with the IDs as 2PD7 and 3RH8,
respectively. The dark and light state crystal structure
sequences start from Met36 and His37, respectively. For
consistency, residue 36 in the dark state was removed to
maintain the same number of residues in both states. Both
structures include a flavin adenine dinucleotide (FAD) as
ligand. FAD and flavin mononucleotide (FMN) are two types
of cofactors commonly existing in the LOV domain. Because
FMN and FAD carry similar biological roles, the adenosine
monophosphate (AMP) moiety was removed from the FAD in
VVD crystal structures to form an FMN. An FMN force field
from a previous study was used for the simulations carried out
in this study.44 A total of four simulation configurations were
constructed, including dark state conformation with or without
the photoinduced covalent bond and light state conformation
with or without the photoinduced covalent bond. The VVD-
FMN complex in each configuration was solvated using explicit
water model (TIP3P)45 and neutralized with sodium cations
and chloride anions. Initially, 10 ns of isothermal−isobaric
ensemble (NPT) MD simulations were carried out for each
configuration. Subsequently, three independent 1.1 μs of
canonical ensemble (NVT) Langevin MD simulations using
different random seeds at 300 K were conducted for each
configuration. The first 100 ns simulations were discarded as
equilibrium, and the following 1 μs simulation was used for the
dimensionality reduction analysis. These led to a total of 12 μs
simulations of VVD for the analysis. For all simulations, the
SHAKE method was used to constrain all bonds associated
with hydrogen atoms. A step size of 2 fs was used, and
simulation trajectories were saved every 1 ns. Cubic simulation
box and periodic boundary conditions were applied for all MD
simulations. Electrostatic interactions were calculated using the
particle mesh Ewald (PME) method.46 All simulations were
carried out using the CHARMM47 simulation package version
41b1 with the support of GPU calculations based on
OpenMM.48

Relaxation Time Scale. MSMBuilder12 was used to build
the Markov state model (MSM) and estimate relaxation time
scale. To apply MSM, the microstates are clustered for
different description surfaces using the k-means clustering
method, and the transition probability matrix was estimated
among different states. Consequently, the eigenvalues and
eigenvectors are calculated for the transition probability matrix.
According to the Frobenius theorem,49 for the stochastic
transition probability matrix, the first eigenvalue is 1.0, and all
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other eigenvalues are less than 1.0. The relaxation time scale is
estimated based on the second eigenvalue as the following
equation

τ τ
λ

= −t( )
ln 1 (1)

where λ1 is the second eigenvalue, and τ is the lag time applied.
Root-Mean-Square Deviation (RMSD). The conforma-

tional change during the MD simulations can be measured by
RMSD with regards to a reference structure. For a molecular
structure represented by Cartesian coordinates, the RMSD is
defined as the following:

=
∑ −= r Ur

N
RMSD

( )i
N

i i1
0 2

(2)

The Cartesian coordinate vector ri
0 is the ith atom in the

reference structure. For each simulation, the RMSD values
with reference to the dark and light state crystal structures were
calculated to quantity the sampling following a previous
study.50

Principal Component Analysis (PCA). The normal
modes for principal component analysis are extracted from a
trajectory by diagonalizing the correlation matrix of the atomic
positions. The correlation matrix is a measure of the Pearson
correlated value of a set of atoms. Each matrix element is
defined as

= =
⟨ ⟩ − ⟨ ⟩⟨ ⟩

[ ⟨ ⟩ − ⟨ ⟩ ⟨ ⟩ − ⟨ ⟩ ]
C

c

c c

r r r r

( r r )( r r )ij
ij

ii
1/2

jj
1/2

i j i j

i
2

i
2

j
2

j
1/2

(3)

where Cij is the measure of correlated movement between
atoms i and j, cij, cii, and cjj are the correlation matrix elements,
and ri and rj are Cartesian coordinate vectors from the least-
squares fitted structures with translational and rotational
motions being projected out. Matrix elements are between
−1 and 1 with negative values indicating negative correlation
and positive values indicating positive correlation between the
motions of atoms i and j.
Time-Structure Based Independent Component

Analysis (t-ICA). The t-ICA method was developed to
identify the slowest dynamics in the simulation with the
maximum autocorrelation value. For an n-dimensional time
series x(t) = t(x1(t),...,xn(t)), t-ICA is performed by solving the
following generalized eigenvalue problem

̅ =CF CKF (4)

where K and F are the eigenvalue and eigenvector matrices,
respectively. C is the covariance matrix, and C̅ is the time-
lagged covariance matrix at time τ, which are defined as

= ⟨ − ⟨ ⟩ − ⟨ ⟩ ⟩x x x xt t t tC ( ( ) ( ) ) ( ( ) ( ) )t
(5)

τ̅ = ⟨ − ⟨ ⟩ + − ⟨ ⟩ ⟩x x x xt t t tC ( ( ) ( ) ) ( ( ) ( ) )t
(6)

The independent component vectors obtained from t-ICA
are uncorrelated and have the maximum autocorrelation value
at a given time.
t-Distributed Stochastic Neighbor Embedding (t-

SNE) Method. The t-SNE method is a nonlinear dimension-
ality reduction method, particularly well-suited for projecting
high-dimensional data onto low-dimensional space for analysis
and visualization purposes. Distinguished from other dimen-
sionality reduction methods, the t-SNE method was designed

to project high-dimensional data onto low-dimensional space
with minimum structural information loss, so that the points
close to each other on the low-dimensional surface represent
states that are similar in the high-dimensional space.
Following the original article,31 the t-SNE method is briefly

described here. This method starts with converting the high-
dimensional Euclidean distance between data points (the
Cartesian coordinates of each frame in the simulation) into the
conditional probability pj|i. Given xi and xj as two data points
representing two structures in Cartesian coordinates, the
probability density distribution of its neighboring data points
for xi is assumed as a Gaussian function centered at xi with
variance σi. The probability of xj to be selected as the neighbor
of xi is a conditional probability calculated as

σ

σ
=

−|| − ||

∑ −|| − |||
≠

p
x x

x x

exp( /2 )

exp( /2 )j i
i j i

k i i k i

2 2

2 2
(7)

The above conditional probability is a nonsymmetric
measurement as pi|j and pj|i are usually different. Therefore,
the similarity of data points xi and xj is calculated as the joint
probability defined as pij

=
+| |p

p p

N2ij
j i i j

(8)

In low-dimensional space, the joint probability describing
similarity is computed for yi and yj as the counterparts of the
high-dimensional structures xi and xj. In the t-SNE method,
Student’s t-distribution with one degree of freedom is
employed to calculate the joint probability between yi and yj,
with qij as

=
+ || − ||

∑ + || − ||

−

≠
−q

y y

y y

(1 )

(1 )ij
i j

k i i k

2 1

2 1
(9)

If the map points yi and yj correctly model the similarity
between the high-dimensional data points xi and xj, the joint
probability qij should be close to pij. Therefore, the aim for the
t-SNE method is to find a low-dimensional representation that
minimizes the difference between qij and pij for all data points i
and j.
One way to compare the differences between high-

dimensional data and low-dimensional representations is
using the Kullback−Leibler (KL) divergence over all data
points to construct the cost functions C to evaluate the
projection from high-dimensional structure (P) to low-
dimensional representation (Q) as

∑= || =
≠

C KL P Q p
p

q
( ) log

i j
ij

ij

ij (10)

The cost function C could be minimized using the gradient
descent method.
One remaining parameter to be selected is the bandwidth of

Gaussian distribution σi that is centered over each high-
dimensional data xi. Because the density of high-dimensional
data varies for different points in most cases, it is unlikely that a
single value of σi could be used for all data points. A binary
search of σi is carried out for each data point to match a fixed
hyperparameter “perplexity” that is specified by users. This
perplexity is defined as

= − ∑PPerp( ) 2i
p plogj ij ij2 (11)
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For each data point xi, σi is optimized until the perplexity
matches the value specified by users. Usually, a larger data set
requires a larger perplexity value. The performance of t-SNE is
fairly robust with sufficiently large hyperparameters.31

Besides the searching for the bandwidth of Gaussian
distributions, the perplexity is also used to determine the
number of nearest neighbors for a particular data point xi using
a tree-based Barnes-Hut implementation of the t-SNE
method.51 The most time-consuming step in the t-SNE
method is the calculation of joint probability for each pair
structure. For large data sets, the computational cost for this
step may become prohibitively expensive. In the Barnes-Hut
implementation of the t-SNE method, given a perplexity value
μ as an integer number, only the 3 μ nearest neighbors for each
data point xi are considered. For the structures not belonging
to the 3 μ nearest neighbors of xi, the joint probability was
treated as zero. Through this approximation, the computa-
tional cost of t-SNE is significantly reduced with moderate
decreasing of the performance. In this study, to evaluate the
best performance of t-SNE, the perplexity is specified as N/3 to
ensure that the joint probability of all data points with regard
to each xi is calculated. The Scikit-learn package52 with t-SNE
implementation is employed in this study to carry out all the
calculations.

■ RESULTS
Initial Comparison of t-SNE with Other Methods. A

total of eight representations using different dimensionality
reduction methods are applied on the model system for
comparison purposes: one-dimensional (1D) and two-dimen-
sional (2D) models for t-SNE, PCA, and t-ICA methods,
respectively, as well as 2D RMSD and full Cartesian
coordinates. The k-means clustering method was used to
divide a total of 12 μs VVD simulations into 1,000 microstates
in each representation only using the collective variables or
order parameters associated with that representation. For
microstates in each representation, an averaged RMSD value is
calculated by averaging all pairwise RMSD values among all
structures within each specific microstate using Cartesian
coordinates. This averaged RMSD value measures the
structure similarity for each microstate. In general, smaller
averaged RMSDs represent better clustering results. The
averaged RMSDs values are plotted for each representation
in the order of decreasing cluster size in Figure 1a. For
comparison purposes, all averaged RMSDs are sorted and
plotted in Figure 1b.
An appropriate discretization should have smaller averaged

RMSDs overall, warranting better structural similarity and

kinetic accessibility inside each microstate. It was suggested
that an adequate microstate should have an averaged RMSD
lower than 1.0 Å.53,54 Large averaged RMSD values of
microstates may lead to inadequate MSMs. As shown in
Figure 1b, the clustering in the Cartesian space has the best
performance due to the least structural information loss. The
result shows that every microstate is clustered with the
averaged RMSD significantly lower than 1.0 Å using Cartesian
coordinates. However, Cartesian coordinates are not suitable
for any further analysis, especially as reaction coordinates to
construct free energy surface.
After dimensionality reduction processes, some structural

information will be inevitably lost, and some kinetic barriers
are obscured during the projection. One criterion to assess
information loss is measuring the similarity with the Cartesian
coordinates results. With this regard, the 2D t-SNE model is
closer to the Cartesian coordinates clustering result (Figure
1b) than all other models. Therefore, it is the best
dimensionality reduction model presented in this study.
Surprisingly, the 1D t-SNE model is significantly better than
the remaining models and comparable with the 2D PCA
model. This demonstrates that the t-SNE method is intrinsi-
cally better than many other dimensionality reduction methods
with minimum information loss. 1D t-ICA and 1D PCA are the
least effective methods presented in this study (Figure 1a).
Overall, the performance of each dimensionality reduction
method by comparing the structure similarity in each
microstate is ranked as Cartesian Space (benchmark) > 2D
t-SNE > 1D t-SNE ≈ 2D PCA > 2D t-ICA ≈ 2D RMSD > 1D
PCA ≈ 1D t-ICA.
In addition to the averaged RMSDs, another metric to

compare different dimensionality reduction methods is the
approximate relaxation time scale estimated using MSM.55

Based on the 1,000 microstates of each representation, the
relaxation time scale can be estimated from the eigenvalue of
the transition probability matrix among these microstates. The
relaxation time scale is an approximate time length needed for
any system to reach its steady state. Experimental studies
suggest that the time for conformational changes could take up
to hundreds of milliseconds.56 Applying different lag times, the
relaxation time scale can be estimated based on the transition
probabilities among microstates. The relaxation time scale
estimated based on lag times ranging from 5 to 100 ns is
shown in Figure 1c. With the smallest structural information
loss among all representations, the clustering analysis using
Cartesian coordinates is expected to be the closest to the
experimental relaxation time scale. Using dimensionality
reduction, structural information loss may lead to inadequate

Figure 1. Comparison of several dimensionality reduction methods: (a) averaged RMSDs of the microstates clustered using different methods
sorted by population of each microstate; (b) averaged RMSDs of the microstates clustered using different methods sorted by the averaged RMSDs;
(c) estimated time scale for different MSMs constructed based on different methods using different lag times (ranging between 5 ns and 100 ns).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00652
J. Chem. Theory Comput. 2018, 14, 5499−5510

5502

http://dx.doi.org/10.1021/acs.jctc.8b00652


clustering of microstates and neglecting of some kinetic
barriers within the microstates due to the assumption that the
kinetic barriers among different conformers are negligible
within each microstate. These potentially neglected kinetic
barriers could lead to an inaccurate time frame required to
reach the steady state as an estimated relaxation time scale.
This may be the reason that the t-ICA method results in a
significantly lower relaxation time scale than other methods.
Overall, the estimated time scale using 2D t-SNE is the closest
to the one based on Cartesian coordinates, suggesting that the
estimation of overall kinetic barrier among microstates
generated by 2D t-SNE is the closest to the real relaxation
time scale.
Representation of High-Dimensional k-Means Clus-

ters. The above analyses demonstrate the effectiveness of the
t-SNE method for dividing the structures from simulations into
microstates. Compared with PCA and t-ICA, the t-SNE

method is better at preserving the kinetic barriers and is the
closest to the results using full Cartesian coordinates, showing
minimum structural information loss. In this section, the t-SNE
method is further tested to distinguish the high-dimensional
clusters and construct the free energy surface.
Here, we redo the clustering analysis aiming for a smaller

number of clusters using the k-means method and Cartesian
coordinates for better representation. The averaged RMSD for
all pairwise structures belonging to the same cluster is applied
as the validation metric for the clustering analysis quality as

= ∀ ∈= = =i j CRMSD Mean(RMSD , )i N j N m m Msame 1... , 1... , 1...

(12)

where i and j are indices for all N data points, and Cm

represents any of the M clusters. Similarly, the structure
dissimilarity among different clusters is represented as

Figure 2. Ten clusters obtained from k-means clustering based on Cartesian coordinates: (a) averaged RMSD value for all structure pairs from
cluster pair; (b) distribution of RMSD values based on structure pairs either within the same cluster (plot on left-hand side) or across the different
clusters (plot on right-hand side). The middle horizontal line in (b) is the averaged RMSD value of each distribution.

Figure 3. Ten k-means clusters of VVD systems using Cartesian coordinates represented by different dimensionality reduction methods: (a) 2D t-
SNE method; (b) 2D PCA method; (c) 2D t-ICA method; (d) 2D RMSD values with reference to the dark and light state crystal structures,
respectively.
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= ∀ ∈

∈ ≠

= = =

=

i C

j C m n

RMSD Mean(RMSD and

and )

i N j N m m M

n n M

diff 1... , 1... , 1...

, 1... (13)

The number of clusters is chosen as ten, because it is the
smallest number of clusters to achieve RMSDsame less than 1.0
Å (0.990 Å as the middle horizontal line in the left-hand side
plot of Figure 2b). The populations for those clusters are
16.6%, 7.4%, 8.5%, 3.6%, 19.6%, 17.8%, 4.8%, 6.4%, 7.5%, and
7.8%, respectively. The RMSDs for all cluster pairs for these
ten states are shown in Figure 2a. It is clear that RMSDdiff
(1.869 Å) is significantly larger than RMSDsame (0.990 Å) as
illustrated in Figure 2b. This indicates that the structural
similarities inside the clusters are much higher than that
between different clusters. Adequate low-dimensional descrip-
tors should be able to project these ten Cartesian coordinates
based clusters onto the free energy surface with clear
distinguishability. If a low-dimensional free energy surface
does not distinguish these clusters clearly, some kinetic barriers
among these clusters could be significantly obscured.
The above ten clusters are plotted using different collective

variables shown in Figure 3. The 2D t-SNE model has
remarkable results in distinguishing different states as free
energy basins. All ten clusters are well separated from each
other and depicted in different colors (Figure 3a). Compared
to our previous study of VVD,50 distribution of these ten states
on a 2D RMSD plot shows the similarities of each state to the
dark and light state crystal structures (Figure 3d). Cluster 8
could be considered as a hidden state, which is different from
both the dark and light state crystal structures. Clusters 2, 6, 3,
and 4 could be grouped as the light region as these states are
close to the light state crystal structure. Clusters 1, 5, 7, 9, and
10 could be grouped as the dark region as these states are close
to the dark state crystal structure. Overall, the hidden state and
the states in the light region are well-separated on the 2D
RMSD surface and PCA surface. However, the states in the
dark region significantly overlap with each other when
projected onto these surfaces (Figures 3b and 3d). The t-
ICA model captures the slowest dynamics in the simulations
and results in a clear separation of the hidden state and the
dark and the light regions (Figure 3c). However, in the t-ICA
model, the dark clusters 1, 5, 10, 7, and 9 significantly overlap
with each other, as well as for the light clusters 2, 3, and 6
(Figure 3c). These results demonstrate that the t-SNE method
offers superior performance in representing the free energy
surface and interrogating the differences among high-dimen-
sional clusters compared to the PCA, t-ICA, and RMSD
models.
Because the different free energy basins are clearly separated

in the 2D t-SNE projections, the free energy surface using the
two t-SNE collective variables generated in the 2D t-SNE
model is constructed (Figure 4). Each state is clearly
represented by separate minimum energy basins, suggesting
that the t-SNE collective variables could represent the high-
dimensional distribution with minimum information loss. It is
worth pointing out that this free energy surface does not
distinguish between nonbonded and bonded configurations,
which will be elaborated below.
Conformational Changes Revealed by t-SNE. In the

representations generated using the t-SNE method, data points
that are distinct from each other are separated by large pairwise
distances, and data points that are similar to each other are
separated by small pairwise distances.30 It was noted that

smaller pairwise distances are more faithful to represent similar
data points than large pairwise distances to represent distinct
data points in t-SNE representations.30 In other words, if two
points on a low-dimensional surface generated using the t-SNE
method are very close to each other, they are likely very similar
to each other in the original high-dimensional space. However,
if two points are far away from each other on a low-
dimensional t-SNE surface, the distance between them may
not accurately represent how different they are in the high-
dimensional space. This is due to a general issue of
dimensionality reduction that the “global structures” of data
are difficult to be preserved. To address this issue, as stated in
the methodology, the perplexity μ was set as N/3. So that for
any structure xi, the joint probability or similarity was
calculated with regard to all other data points to preserve the
“global structures” of the original data set. As a comparison, the
t-SNE distributions with reference to the crystal structures of
dark and light states, respectively, are plotted in Figure 5 with
regard to different perplexity μ.
The results in Figure 5 show that increasing perplexity for

more nearest neighbors to be calculated significantly increases
the preservation of global structure through projection. With a
small perplexity value as 10, the cluster 6 is projected adjacent
to the clusters 1, 7, and 9 (Figure 5a). However, the
conformation is significantly different between the cluster 6
(light state) and the clusters 1, 7, and 9 (dark state). With the
perplexity value as 100, clusters 2 and 4 are close to each other
(Figure 5b). With the perplexity value as 1000, the t-SNE
method gives a well-behaved representation (Figure 5c) that
converges to the most comprehensive analysis with the
perplexity value as N/3 with N as 12,000 for VVD (Figure 5d).
With the larger perplexity value, the KL divergence between

low-dimensional description with the high-dimensional data
decreases. The KL divergences are 1.556, 0.887, 0.364, and
0.143 for the perplexity values as 10, 100, 1000, and N/3,
respectively. Smaller KL divergence values mean that the low-
dimensional description can better represent the high-dimen-
sional data structure. Clusters 5 and 6 have the lowest averaged
RMSDs with reference to the dark and light state crystal
structures, respectively. With the largest perplexity, clusters 5
and 6 lay at the two opposite locations on the 2D t-SNE
surface (Figure 5d). Therefore, the clusters that lay between
clusters 5 and 6, including clusters 1, 3, 4, 7, and 9, may
represent a gradual conformational change from the dark state
region (plotted in blue) starting from the cluster 5 toward the
light state region (plotted in red) ending at the cluster 6. With

Figure 4. Free energy landscape representation of 2D t-SNE
projections.
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a large perplexity value, the t-SNE method could preserve the
global structure of the original data set, and the 2D t-SNE
projection reveals potentially feasible transitions between the
dark and light states of VVD.
Revealing the Covalent Bond Effects Based on 2D t-

SNE Projection. The above analyses demonstrate the
advantage of the t-SNE method compared with other
dimensionality reduction methods in constructing free energy
surfaces and capturing the structural changes. Next, the t-SNE
method is further applied on VVD protein simulations to
reveal the influence of the key photoinduced covalent bond
between VVD and its cofactor FAD on the overall free energy
landscape.
The free energy surfaces are plotted on the 2D t-SNE

projection for the simulations of nonbonded and bonded
configurations, respectively, (Figure 6). Direct comparison
between two plots shows that the photoinduced covalent bond
significantly changes the free energy landscape of VVD protein.

It should be noted that ten high-dimensional k-means clusters
labeled by numbers on both plots are not expected to be the
free energy minima on either surface, because the clustering
was carried out using the simulations from all configurations.
In the nonbonded configurations (Figure 6a), dark state
clusters 1, 5, and 10 and light state clusters 3, 4, and 6, as well
as the hidden state cluster 8, are all extensively sampled. One
light state cluster 2 and two dark state clusters 7 and 9 are not
sampled well. In the bonded configuration (Figure 6b), dark
state clusters 1, 5, 7, and 9 and light state clusters 2, 3, 4, and 6
are all sampled sufficiently. Light state cluster 10 and the
hidden state cluster 8 are not sampled well. The difference
between the sampling results of nonbonded and bonded
configurations reveals the impact of the photoinduced covalent
bond on the free energy landscape of the system.
It should be noted that the transition region between the

dark state crystal structure (cluster 5) and the light state crystal
structure (cluster 6) has a lower free energy barrier in the

Figure 5. t-SNE 2D projection free energy surface using different perplexity μ values. The joint probability calculated for 3 μ nearest neighbors is as
follows: (a) perplexity value as 10; (b) perplexity value as 100; (c) perplexity value as 1000; (d) perplexity value as N/3. N is the total number of
data points. Different colors indicate that a structure is either close to the dark (blue) or light (red) state crystal structure in terms of RMSD values.

Figure 6. Free energy surfaces estimated from (a) t-SNE 2D projection from nonbonded configuration samplings and (b) t-SNE 2D projection
from bonded configuration samplings.
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bonded configuration (Figure 6b) than the one in the
nonbonded configuration indicated by dashed lines (Figure
6a). Without this covalent bond, the cluster 4 and the region
between clusters 3 and 1 are less sampled as shown in the
nonbonded configuration, resulting in a free energy barrier
around 5 to 6 kBT. In the bonded configuration, the sampling
of this region is increased, leading to a lower free energy barrier
around 4 kBT. This significant change of the transition free
energy barrier provides a theoretical framework to explain the
mechanism in which the photoinduced covalent bond
facilitates the transition from the dark state to the light state.
To evaluate the transition barrier more accurately, the 1D t-
SNE projection was applied to construct free energy profiles as
follows.
Revealing the Covalent Bond Effects Based on 1D t-

SNE Projection. The 1D t-SNE projection is applied on the
VVD simulations with the distribution of each cluster

projected and plotted in Figure 7a. All ten clusters are well
separated from each other with minimum overlap among them,
demonstrating the superior performance of the t-SNE method
as an effective dimensionality reduction method. To compare
1D and 2D t-SNE projections, the 1D t-SNE vector is
represented as a color spectrum to illustrate distribution of
clusters on the 2D t-SNE surface (Figure 7b). The projections
of all ten clusters onto the 1D t-SNE space as color spectrum
are clearly distinguishable. It should be noted that unlike PCA
or t-ICA methods, the 1D t-SNE vector is not either of the two
vectors generated in the 2D t-SNE model. As a comparison,
these states are also projected onto PC1 or t-IC1 vectors from
the PCA and t-ICA models, respectively (Figure 7c and 7d). In
these 1D projections, the distributions of ten clusters
significantly overlap with each other, indicating that the PC1
or t-IC1 vectors could not capture the difference among these
states.

Figure 7. Ten clusters distribution on various 1D spaces: (a) t-SNE 1D projection; (b) t-SNE 2D projection colored by the 1D t-SNE projection
value; (c) PCA 1D projection; (d) t-ICA 1D projection.

Figure 8. (a) t-SNE 1D projection separated by ten clusters to represent the free energy distribution for bonded and nonbonded configurations and
(b) t-SNE 1D projection with regard to the RMSD values referencing to the dark and light state crystal structures, respectively.
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Using 1D t-SNE projection, the free energy profiles are
plotted for the nonbonded and bonded configurations,
respectively (Figure 8a). It is obvious that the photoinduced
covalent bond significantly alters the free energy surface of
VVD protein. Because the distances among clusters along the
t-SNE vector reflect the actual similarities of these clusters, it is
likely that clusters between cluster 5 (representing the dark
state crystal structure of VVD) and cluster 6 (representing the
light state crystal structure of VVD), including clusters 7, 1, 9,
4, and 3, could serve as transition regions between the
functional dark and light states of VVD. This also agrees with
the distribution of these clusters on the 2D t-SNE projection as
illustrated in Figures 5 and 7b. The free energy profiles plotted
in Figure 8a suggest lower barriers for the transition between
dark and light states. This is consistent with the decreasing free
energy barrier in the transition region in the bonded
configuration compared to the nonbonded configuration
shown in 2D free energy surfaces (Figure 6).
To further evaluate feasibility of the transition pathway

between VVD dark and light states, the RMSDs of all VVD
simulations are plotted in 1D t-SNE with reference to the
crystal structures of VVD dark (blue) and light states (red),
respectively (Figure 8b). The distribution profile (represented
as solid line) is fitted for each RMSD plot as well. Both RMSD
distributions reveal a smooth change of ten clusters on this 1D
t-SNE distribution. Cluster 4 is the most likely to serve as the
transition state region, because this cluster has relatively equal
RMSDs with reference to the dark and light state crystal
structures. Clusters 10, 2, and 8 are unlikely to be involved in
the dark/light states transition, because these clusters deviate
from both dark and light state crystal structures.
Finally, each trajectory was individually analyzed to track

real time transition among different states represented by
clusters. The propagation of each trajectory is projected onto
the 1D t-SNE surface with labels corresponding to clustering
states (Figure 9). Six 1 μs trajectories for nonbonded and six 1
μs trajectories for bonded configuration are plotted in Figures
9a and 9b, respectively. For each configuration, three
trajectories starting from the dark state are referred to as
dark T1, T2, and T3 and plotted in red, and three trajectories
starting from the light state are referred to as light T1, T2, and
T3 and plotted in blue.
In the nonbonded configurations, no dark trajectory samples

any light state clusters (clusters 2, 3, and 6) or hidden state
close to the light state (cluster 8). Only dark T3 trajectory

briefly reaches cluster 4 as the proposed transition state region
before falling back to the dark state region (Figure 9a).
Interestingly, dark T2 trajectory dwells in the hidden state
cluster 10 for a significant portion of the simulation. On the
contrary, light T1 and T3 trajectories show clear transitions
from the light to the dark state region through the transition
state region and do not return back to the light state region.
In the bonded configuration, light T1 trajectory mainly

dwells in cluster 8 as the hidden state, and light T3 trajectory
samples clusters 6 and 3 (Figure 9b). Interestingly, light T2
trajectory also shows the transition from the light to the dark
state region through the transition state region and does not
return back to the light state region. For the simulations
starting from the dark state, dark T1 trajectory briefly
approaches cluster 4 as the transition state region before
dwelling in the dark state region. Dark T2 trajectory mainly
dwells in the cluster 5. Dark T3 trajectory, however, slowly
crosses cluster 4 and briefly reaches cluster 6 as a light state
and quickly transforms back to the dark state afterward.
Compared to the nonbonded configuration, the presence of
the photoinduced covalent bond does increase the probability
of transformation from the dark state to the light state.

■ DISCUSSION

Developed by Geoffrey Hinton and Laurens van der Maaten,
the t-SNE method is a nonlinear dimensionality reduction
method and has been widely applied in many fields including
artificial intelligence, cancer research, biomedical signal
processing, and bioinformatics.33−36 In the current study, the
t-SNE method is applied on molecular dynamics simulations of
circadian protein VVD to demonstrate the effectiveness of this
method in probing free energy surfaces and reveal potential
allosteric effects associated with the photoinduced covalent
bond in VVD. For many dimensionality reduction methods
being applied on molecular simulations, structural information
loss is inevitable when describing 3N-dimensional structures by
only one or two dimensions. The widely applied PCA method
identifies the eigenvector to capture the maximum variance of
the protein fluctuation during simulation. The t-ICA method
identifies the eigenvector with the maximum autocorrelation
time to represent the slowest dynamical motions. Both PCA
and t-ICA are linear dimensionality reduction methods.
However, for protein systems, nonlinear dimensionality
reduction methods could be more suitable by preserving

Figure 9. Transition of all 12 trajectories among different clusters: (a) six trajectories with the nonbonded configuration as trajectories starting from
the light state (light T1, T2, T3 in blue) and trajectories starting from the dark state (dark T1, T2, T3 in red) and (b) six trajectories with the
bonded configuration as trajectories starting from the light state (light T1, T2, T3 in blue) and trajectories starting from the dark state (dark T1,
T2, T3 in red).
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maximum structural and dynamical information.25 Recently,
some nonlinear dimensionality reduction methods including
diffusion map,25 isomap,57 autoencode, and time-lagged
autoencode26 have been developed. These methods have
different strengths in extracting critical structural and
dynamical information. For example, time-lagged autoencoders
could outperform t-ICA methods by embedding the nonlinear
transformation to search the conformational changes with
maximum autocorrelation time.26 Compared to these methods,
the t-SNE method is superior in extracting the pairwise
distance information from high-dimensional structures and
constructing low-dimensional descriptors. Practically, pairwise
distances are the most commonly used order parameters to
construct free energy surfaces. In a recent study, a k-nearest
neighbor estimator was applied to estimate the free energy of a
high-dimensional system through a low-dimensional embed-
ding manifold by design without explicit projection.58 As a
comparison, the t-SNE method, also a type of stochastic
neighboring embedding method, explicitly projects the
densities in the high-dimensional space onto a low-dimensional
space with minimum structural information loss.
There is no universal standard to compare different

dimensionality reduction methods. Many studies applied
different metrics for comparison.4,55,59 In principle, an
adequate low-dimensional descriptor should have the following
properties. If two points are very close on the projected
surface, they should correspond to the similar high-dimen-
sional structures. The k-means clustering method partitions
multidimensional data into different clusters. For simulations
of biomacromolecules such as proteins, these clusters are
referred to as microstates and applied in constructing Markov
state models (MSMs). To be an adequate 1D or 2D descriptor
for protein simulations, it should lead to low averaged RMSDs
in each microstate generated using this descriptor, to maintain
the structural similarity within each microstate.
As demonstrated in this study, the t-SNE method has the

best performance, while t-ICA has the worst performance
based on the comparison of the structure similarity inside each
cluster. This result is somewhat surprising, because t-ICA
should outperform PCA in capturing the slowest dynamical
motions in theory. There are two possible explanations for this
observation. First, the lag time of t-ICA may not be adjusted
thoroughly to achieve the best performance. Second, some
small conformational changes may be associated with slow
transition time but are treated as the “fast dynamics”, which
worsens the performance of the t-ICA method. In the current
study, the large conformational changes among dark, light, and
hidden conformations are captured as the slowest dynamics.
However, for the smaller conformational changes among the
states within the dark or light regions, the t-ICA method
cannot distinguish them very well. The nonlinear design of the
t-SNE method enables this method to maximally preserve the
data distribution, resulting in both 2D and 1D t-SNE analyses
with the best performance. This validates the t-SNE as a
superior alternative method for analysis of molecular dynamics
simulations for biomacromolecules.
In MSM, the relaxation time is an estimated time to

approach steady state. Experimentally, the relaxation time scale
to accomplish the transition among different conformations
can be up to milliseconds to seconds for proteins.56 In general,
the one based on the Cartesian coordinates implies the
transition time scale that is the closest to the experimental
observation (Figure 1b). All other MSMs based on various

dimensionality reduction methods imply significantly shorter
transition time scales. The 2D t-SNE model implies a
transition time scale closest to the one based on Cartesian
coordinates. The microstates are constructed based on the
assumption that no significant kinetic barrier exists within each
microstate. Therefore, inadequate construction of the micro-
states could cause that some original kinetic barriers in the
high-dimensional Cartesian space are disguised or distorted
upon projection, leading to inferior performance of other
models.
Due to the preservation of pairwise distance distribution, the

t-SNE method is excellent to represent and distinguish high-
dimensional clusters. Clustering analysis, also considered as an
unsupervised learning, has been widely applied on MD
simulations including structure similarity based clustering
(e.g., k-means) and kinetic based clustering (e.g.,
MSMs).10,53 Because of the structural similarity, each cluster
often corresponds to a minimum on the free energy surface. As
demonstrated in Figure 3, PCA or t-ICA methods as well as
2D RMSD could not represent ten clusters generated using
Cartesian coordinates well, showing significant overlap among
some clusters when using these projections. As a comparison,
both 2D and 1D t-SNE models (Figure 3a and 7a,
respectively) have much better performance in distinguishing
different clusters. This strongly suggests that the t-SNE
method could serve as a general dimensionality reduction
tool to capture the difference among high-dimensional clusters
and represent the free energy surface for biomacromolecules.
The t-SNE method is further applied to quantitatively

evaluate the impact of the photoinduced covalent bond on
protein VVD allostery and identify the potential conforma-
tional switching pathways. Both the 1D t-SNE free energy
profile and the 2D t-SNE free energy surface suggest that the
covalent bond could lower the free energy in the transition
region (cluster states 4 and 9) by ∼1 kBT. The decreasing free
energy in the transition region is likely to facilitate a
functionally important conformational transition from the
dark to the light state. Overall, the t-SNE method should be
one important addition in the simulation analysis toolbox to
distinguish clusters and represent the free energy surface for
biomacromolecule simulations and can be combined with
other methods for more informative analyses.

■ CONCLUSION
In this study, the t-SNE method was applied as a superior
dimensionality reduction method for the analysis of molecular
dynamics simulations of proteins. The advantage of the t-SNE
method in retaining the pairwise distance distribution
information, capturing the conformational changes, distin-
guishing the high-dimensional clusters, and representing free
energy surface was demonstrated through comparison with
other commonly used dimensionality reduction methods. It is
also demonstrated that even with only one dimension, the t-
SNE method has a better performance than many other
methods, rendering this method as one of the best options for
the analysis of biomacromolecules simulations. Using the 1D t-
SNE model, a time dependent fitting analysis was carried out
to track the real time state changes of each trajectory. Overall,
the t-SNE method could retain the structural and dynamical
information with minimum information loss compared to
other commonly used dimensionality reduction methods and
could be applied for the analyses of simulations for many other
biomacromolecules.
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