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ABSTRACT
Molecular dynamics simulations contain detailed kinetic information related to the functional states of proteins and macromolecules, but this
information is obscured by the high dimensionality of configurational space. Markov state models and transition network models are widely
applied to extract kinetic descriptors from equilibrium molecular dynamics simulations. In this study, we developed the Directed Kinetic
Transition Network (DKTN)—a graph representation of a master equation which is appropriate for describing nonequilibrium kinetics.
DKTN models the transition rate matrix among different states under detailed balance. Adopting the mixing time from the Markov chain,
we use the half mixing time as the criterion to identify critical state transition regarding the protein conformational change. The similarity
between the master equation and the Kolmogorov equation suggests that the DKTN model can be reformulated into the continuous-time
Markov chain model, which is a general case of the Markov chain without a specific lag time. We selected a photo-sensitive protein, vivid,
as a model system to illustrate the usage of the DKTN model. Overall, the DKTN model provides a graph representation of the master
equation based on chemical kinetics to model the protein conformational change without the underlying assumption of the Markovian
property.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5110896., s

I. INTRODUCTION

Conformational changes are essential to the function of many
biomolecules.1,2 The atomic details and mechanisms of these con-
formational changes cannot be directly probed using conven-
tional experimental methods and are well beyond the scale of
the quantum calculations. Molecular dynamics (MD) simulations
have widely been used to investigate the dynamics and confor-
mational distributions of biomolecules.3–5 However, MD simula-
tions on experimentally relevant time scales are often prohibitively
expensive for physiologically relevant phenomena, such as pro-
tein folding.4,6,7 Many enhanced sampling techniques have been
developed to study processes beyond the reach of conventional
MD simulations.8–10 In these methods, biased sampling of con-
formational states is combined with a subsequent reweighting of
the samples to achieve a Boltzmann distribution. However, to
enhance the sampling efficiency, most biased sampling methods
require a priori potentials, which may not be readily available in
many complex processes. Recently, with the significant improve-
ment of computational powers provided by graphical processing
units (GPUs), the time scale accessible to direct MD simulations

has improved from nanoseconds to milliseconds, reaching the fold-
ing time scales of some proteins.11,12 These studies demonstrate
that the underlying mechanism for protein conformational switches
can be unraveled through extensive simulations. However, to deal
with an enormous amount of data generated in these simulations,
quantitative models are needed to distill the simulated confor-
mational dynamics into thermodynamic and kinetic parameters.
Many methods have been established to meet this need.13–17 Among
them, Markov state models (MSMs)18 and transition network
(TN)15 are two popular approaches that use master equations19–22
to compute thermodynamics and kinetic quantities from MD
simulations.

MSMs characterize the underlying complex kinetics features of
molecular simulations, including identifying metastable states and
kinetically favorable pathways. To apply MSMs, one needs to parti-
tion the conformational space into discrete states.23 The transition
probability among those discrete states is estimated based on transi-
tions observed in MD trajectories.23 MSMs assume that the protein
dynamics are Markovian, meaning that a jump between two states
(x→ y) after a time interval named the “lag time,” τ, does not depend
on the trajectory prior to entering state x. Because only conditional
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transition probabilities are required,MSMs do not need a single long
trajectory to sample the conformational space. Alternatively, ensem-
bles of short trajectories are sufficient to establish an appropriate
MSM.Due to the simplicity and efficiency,MSMs have been success-
fully and widely applied in many studies related to protein dynamics
including folding and allostery.24,25

The challenge for MSMs is ensuring that the Markovian
approximation holds for the selected discrete states and lag time.
Although some theoretical studies demonstrated that a Markovian
discretization of state-space exists,26,27 producing an appropriate
discretization is still challenging in many cases. In some cases, dif-
ferent dimensionality reduction methods could lead to dramati-
cally different MSMs based on the same simulations results.26,28–30
Another important factor is the lag time τ. Because the transition
probability needs to be estimated based on a given lag time, the selec-
tion of a proper lag time is critical to the quality of MSMs. Unfortu-
nately, the selection of lag time may not be asymptotic, which makes
the determination of lag time to maximize Markovian property of
system a challenging task.

Besides MSMs, kinetic rate laws have also been used to model
the conformational changes in MD simulations. Transition network
(TN) models were established based on rate theory to model equi-
librium properties.14,15 TN is a discrete representation of confor-
mational space and represents conformational changes through a
network of subtransitions.15 Each subtransition represents a con-
formational change between two relatively similar structures. In
general, TN models are applied to equilibrium properties by cal-
culating the free energy difference between two states instead of
transition probabilities.15 The free energy for each state is usu-
ally estimated within a harmonic approximation.15 Because the free
energy represents the distribution of states in equilibrium, and
the edges represent equilibrium flux between adjacent states, a TN
model represents the equilibrium kinetic and thermodynamic prop-
erties. Further studies demonstrated that the TN model could be
reformulated within the framework of MSM based on Bayesian
probabilities.14,26

Here, we further improve the TN method by introducing the
directed kinetic transition network (DKTN) which, unlike MSMs,
is capable of reproducing nonequilibrium population dynamics.
DKTNs, like MSMs, use the general master equation framework
but allow for time-varying population fluxes. The building blocks
for this model include the estimation of distribution and the “mean
transition time (MTT)” between different states. Both can be esti-
mated directly from the simulation. A simple four-state model
system of the DKTN model and the connections between the
DKTN model and the MSMs are illustrated in the supplementary
material.

We use a model system vivid (VVD) protein to demonstrate
the DKTN model. VVD is a photo-sensitive protein, which under-
goes significant conformational changes from dark conformation to
light conformation upon blue light excitation. Many computational
and experimental studies have been conducted on the VVD pro-
tein.10,31–34 The important residues and some potential conforma-
tional change mechanisms have been proposed.10,31 However, most
computational studies focus on the equilibrium property of VVD,
without investigating the nonequilibrium conformational changes.
The DKTN model simulates the time dependent evolution of the
distributions for VVD from the dark or the light conformation as

different starting conditions. Using the DKTN model, we demon-
strated that VVD starting from the light state could reach the same
equilibrium faster than VVD starting from the dark states.

II. THEORY

A. Describing the evolution of state populations
using master equation

Assuming that the transitions among different states follow first
order chemical kinetics, the time-evolving probability distribution
of state occupation (i.e., the “population”) can be described using
the following generalized master equation:19

Ṗi(t) = �−�n
j=1 kji�Pi(t) + ��n

j=1 kij�Pj(t)
=�n

j=1 (−kjiPi(t) + kijPj(t)), (1)

where Pi(t) describes the population of the state i at time t and kij
and kji are the rate of transitions from state j to state i and state i to
state j, respectively. Ṗi(t) is the derivative of population with respect
to time. In the matrix notation, Eq. (1) can be written as

Ṗ(t) = KP(t), (2)

where P(t) represents the population of different states at time t.K is
theN ∗N rate matrix describing the transition rates among different
states and is the key matrix in the DKTN model. An off-diagonal
term kij represents the transition rate from state j to state i, and the
diagonal terms are kii = �−∑n

j=1 kij� < 0.
For a specific initial condition P(0) = P0, Eq. (2) can be solved

using the matrix exponential of K as35

P(t) = eKtP0, (3)

where eK t is given by the following power series:

eKt = I +Kt + 1
2!
t2K2 + 1

3!
t3K3 +� + 1

n!
tnKn +�. (4)

By using spectral decomposition, the time dependent popula-
tion can be solved as

K = UDU−1

eK = UeDU−1 = U
�����������

eλ1 0 . . . 0
0 eλ2 . . . 0
⋮ ⋮ � ⋮
0 0 . . . eλn

�����������
U−1. (5)

Equivalently, the time dependent population can be expressed based
on the left eigenvector and right eigenvector as

P(t) = eKtP0 =�N
i=1 φR

i �φL
i P0�eλi t , (6)

where φL
i and φR

i are the left eigenvector and right eigenvector of
rate matrix K , respectively. λi is an eigenvalue of rate matrix K .
From Eq. (6), it is clear that the time-dependent population for any
states is the combination of multiple exponential decay with the
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relaxation time as −1/λi. The projection of initial population P0 on
the left eigenvector φL

i determines the amplitude of the exponential
decay phase, and the right eigenvector determines the weights of the
current decay phase.19

Constructing the rate matrix K is essential for establishing the
DKTN model. Accordingly, we use the information from the equi-
librium distribution and the state transitions based on the detailed
balance to construct the rate matrix K and model how a system
approaches the equilibrium distribution.

B. Directed kinetic transition network (DKTN) model
The DKTN model can be constructed using microstates based

on detailed balance.36 We followed the same procedures as with
the widely applied TN model and MSM.15 First, the structures
are grouped into different states based on the structure similar-
ity. Unlike MSMs or TN models, the DKTN model uses a mas-
ter equation to describe the chemical kinetics. In general, the TN
model represents the system in the equilibrium, in which the
fluxes between two states are equal to each other. The DKTN
model simulates the reactions from both sides based on the
detailed balanced constraint. Therefore, the TN model is a spe-
cial case of the DKTN model as it evolves in the equilibrium
state.

The DKTN model is a weighted and directed graph repre-
sentation of a master equation, which includes nodes represent-
ing each state and directed edges representing reaction constants
between two nodes. The nodes in the DKTN model are treated as
the microstates similar to the microstates in the MSMs.26 These
microstates are clustered based on the structure similarity. The
structure similarity in each microstate leads to the kinetic similar-
ity. The equilibrium Boltzmann distribution of each microstate πs is
estimated as the percentage of the number of snapshots in state S vs
the total number of snapshots,

πs = Ns∑s Ns
. (7)

The free energy of each microstate could be estimated as

Es = −kBT lnπs. (8)

For a directed edge connecting two microstates ν → �, the combi-
nation of detailed balance and microscopic reversibility yields the
following relationships:

f�ν = fν� = π�k′�ν = πvk′ν�, (9)

where π� and πv are the Boltzmann distributions of microstates �
and v, respectively, and k′�ν and k′ν� are the reaction rate constants for
the transitions ν → � and � → ν, respectively. The terms f ν� and f �ν
are equilibrium fluxes for the transitions � → ν and ν → �, respec-
tively.15 The reaction rate represents how fast a transition between
twomicrostates occurs and is the inverse of the mean transition time
between them. Therefore, in the equilibrium, the mean transition
time between two states is given by the inverse of the flux.15 Obvi-
ously, the mean transition time from � → ν and ν → � are identical
in the equilibrium and defined as τν�

τν� = f −1�ν = f −1ν� . (10)

In the current study, the “mean transition time” (MTT) or τν�
is estimated through the collection of transitions in the equilibrium
simulation as the average value of the transition time between two
adjacent microstates in the simulations.

As shown in Fig. 1, all the adjacent transitions as �→ ν or ν→ �
should be collected in the given simulations. For each transition, it
is assumed that the starting timestamp for state � or ν is ts, and the
ending timestamp for the other state ν or � is te. In general, the tran-
sition time between � and ν defined as (te − ts)/2 should be sufficient
for the current analysis. Collecting all instances of � → ν or ν → �
transitions, τν� or MTT between � and ν is estimated as

τν� = 1
n�n

i=1
tei − tsi

2
. (11)

After the estimation of τν�, the reaction rate constants for tran-
sitions � → ν and ν → � can be rewritten using Eqs. (9) and (10)
as

k′ν� = (πvτν�)−1, k′�ν = (π�τν�)−1. (12)

Overall, the basic building blocks of the DKTN model include
microstates (nodes V), transitions among microstates (edges E), and
the reaction rate constants for the transitions (edge weights W). The
reaction rate constants k′ν� and k′�ν are used as the directed edge con-
stant Eν� and E�ν that connect two microstates in the DKTN model.
The reaction rate constants are the rate matrixK in the master equa-
tion, which is the key to solve the evolution of the population. Unlike
the undirected TN models, which are static networks representing
the equilibrium flux only, the DKTN model represents the kinetic
property of system as chemical kinetic models. Other properties of
the DKTNmodel and the relation to the MSMs are demonstrated in
Sec. II C.

C. Equilibrium distribution for the DKTN model
The estimated equilibrium distribution πs is used to construct

the rate matrix between different microstates using Eq. (12). For
the master equation [Eq. (1)], the populations for different states
will converge to a unique, stationary distribution Peq, which is the
same as the estimated equilibrium distribution πs. Peq can be solved
through Eq. (1), when the populations of different states converge to
stationary distribution as the following:

FIG. 1. The demonstration of the estimation of τν� for the microstate � and ν.
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Ṗi(t) = n�
j=1�−kijP

i
eq + kjiPj

eq� = 0∀i

�n
i=1 Pi

eq = 1.
(13)

The equations above are linear37 and can be solved analytically.
Given the conditions of k′ij = (πiτij)−1 and k′ji = (πjτij)−1, the above
linear equations have one unique solution as Peq = πs. Therefore,
given the condition that the rate matrix K satisfies both the equi-
librium distribution and detailed balanced constraint, the stationary
distribution of the DKTNmodel is guaranteed to be the equilibrium
distribution.

Although the rate matrix can be constructed using the esti-
mated equilibrium distribution πs and MTT based on Eq. (12),
the rate matrix can also be constructed based on the experimen-
tal rate constants if the data are available. It should be noted that
even when the time-dependent state’s population is solvable using
Eq. (6), the master equation [Eq. (1)] or the DKTN model does
not necessary converge to a unique, stationary distribution. The sta-
tionary distribution could be obtained from the DKTN model if
and only if the linear equations shown in Eq. (13) have a unique
solution.

D. Relation to the Markov State Models (MSMs)
and continuous time Markov Chain (CTMC) model

The DKTN model is also equivalent to the continuous time
Markov chain (CTMC) model. The CTMC model is a more general
case of MSMs, in which the key difference is the presence of time-
varying fluxes. The transition probability matrix in CTMC could
evolve over time through the transition rate matrix based on the
Kolmogorov equation,38,39

P′t = QPt . (14)

The above equation is the same representation to the master equa-
tion [Eq. (2)] with different notations, where Pt represents the time
dependent transition probability matrix among Markov states of
CTMC model in time t, Q is the transition rate matrix, and P′t is
the first order derivative of the time dependent transition probability
matrix with respect to time t. Because of the similarity of the Kol-
mogorov equation with the master equation, the DKTN model can
be treated as a CTMC model, which can be further formulated as
MSMs.

Comparing with MSMs, the CTMC model is an integral-
differential Markov state model without the specific lag time. The
transition probability matrix is constant in the MSMs and variable
in the CTMC model. For a specific time t, the transition probability
matrix among different states for the CTMC follows the following
equation:39

P(t) = eQt . (15)

The current DKTN model can be translated into the MSMs
following Eq. (15) to calculate the transition probability between dif-
ferent states at a particular time. A simple example containing four
states to illustrate DKTNmodel is represented in the supplementary
material.

E. Half-mixing time and effective reaction
rate constant

The DKTNmodel could be used to model the dynamical prop-
erties among a large number of states. In most applications, only
a few states carry chemical significance, such as “reactant” and
“product” states. Most other states could be referred to as inter-
mediate states. From the experimental point of view, it is infor-
mative to obtain an effective reaction rate constant between the
“reactant” state and “product” state to describe the overall effec-
tive rate of the transitions between them. This transition is not an
elementary reaction, however, but a combination of reaction rate
constants in the system, which is named as “effective reaction rate
constant.”

In chemical kinetics, the half-life is widely used to describe the
rate for a decay process.40,41 For a typical decay process, half-life is
defined as the time required for the population halve. Clearly, for a
simple decay phase as P(t) = P0e−λt with decay constant λ, the half-
life is ln 2/λ. However, in the DKTN model, the decay of each state
follows Eq. (6), which is a combination of multiple decay processes.
Therefore, we cannot use a single decay constant or a single half-life
value to describe the time required to reach equilibrium. Adopting
the mixing time concept in the Markov chain model,42 we define the
half-mixing time to describe the speed at which any particular state
reaches equilibrium.

More specifically, the half-mixing time is defined as the small-
est time t required for a particular state A to reach halfway to the
equilibrium from the starting distribution, given by

�P(Xt ∈ A) − Peq(A)� ≤ 1
2
�P0(A) − Peq(A)�, (16)

where P(Xt ∈ A) is the population of state A at time t and Peq(A)
and P0(A) are the equilibrium and the starting distribution for state
A, respectively. Although the half-mixing time is difficult to calcu-
late analytically, it is possible to calculate numerically from Eq. (6). It
should be noted that for a “product” state which has starting popula-
tion of 0, the half mixing time is the smallest time for the distribution
to reach ½Peq(Product). Because this half-mixing time describes the
transition from the reactant to the product states, we can further
define an effective rate constant as

keff = (ln 2Pproduct
eq )�tproducthalf -time, (17)

where Pproduct
eq is the equilibrium distribution and tproducthalf -time is the half

mixing time for the product state.
Due to the detailed balance constraint, the DKTNmodel is also

a reversible CTMCmodel which satisfies the following equation:39

1
P j
eq
eKtji = 1

Pi
eq
eKtij ∀(i, j), (18)

where Pj
eq and Pi

eq represent the equilibrium distribution for states
j and i, respectively. The term 1

Pj
eq
eKtji represents the percentage of

the equilibrium distribution for microstate j at time t starting with
microstate i at time t = 0, and vice versa for 1

Pi
eq
eKtij . The equivalence

of these two expressions in Eq. (18) indicates that at any given time
t, the percentage of the equilibrium for state j in i → j transition is

J. Chem. Phys. 151, 144112 (2019); doi: 10.1063/1.5110896 151, 144112-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5110896#suppl
https://doi.org/10.1063/1.5110896#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

identical to the percentage of the equilibrium for state i in j→ i tran-
sition. In other words, the half-mixing time (50% to equilibrium) for
the state i in j → i transition and state j in i → j transition would be
identical. Therefore, the reversible reaction from a “reaction” state
to a “product” state has the exact same half-mixing time with the
“product” state to a “reaction” state.

It is interesting to identify which conformational change is the
most important to the overall transition from a “reactant” to a “prod-
uct” state. After defining the half-mixing time and effective reaction
rate to represent the rate of transition between “reactant” and “prod-
uct” states, the importance of each edge (conformational transfor-
mation) can be calculated by the decrease in the effective reaction
rate after removing the edge using

EdgeImportance = kSystemeff − kRemove Edge
eff

kSystemeff

, (19)

where kSystemeff is the effective reaction rate from the “reactant” state

to the “product” state with all edges present and kRemove Edge
eff is the

effective reaction rate from the “reactant” state to the “product” state
with one edge removed. The decrease in such an effective reaction
rate indicates the importance of that edge (conformational change)
in the DKTN model. The calculation of edge importance is also
demonstrated in the simple model presented in the supplementary
material.

III. COMPUTATIONAL METHODS

A. Molecular dynamics simulation
The structures of dark and light states of VVD were obtained

from the Protein Data Bank (PDB)43 with the IDs as 2PD7 and
3RH8, respectively. Both structures include a flavin adenine din-
ucleotide (FAD) as a cofactor. Following a previous study,10 the
adenosine monophosphate (AMP) moiety was removed from the
FAD to form the flavin mononucleotide (FMN) because they carry
similar biological roles. The FMN force field from a previous study
was applied.44 Hydrogen atoms were added to the VVD and its
cofactor to construct the simulation system, which was further
solvated using an explicit water model (TIP3P)45 and neutralized
with a sodium cation and chloride anion. A total of 20 produc-
tion simulations were carried out, including 10 simulations start-
ing from the crystal dark state conformation (2PD7) with differ-
ent random seeds and 10 simulations starting from the crystal
light state conformation (3RH8) with different random seeds. Each
simulation is a 1.05 �s canonical ensemble (NVT) Langevin MD
trajectory at 300 K. For each simulation, the first 50 ns simula-
tion was discarded as the equilibration, and the subsequent 1 �s
simulation was used for analysis. For all simulations, the SHAKE
method was used to constrain all bonds associated with hydro-
gen atoms. A step size of 2 fs was used, and simulation trajecto-
ries were saved every 10 ps. The cubic simulation box and periodic
boundary condition were applied for all MD simulations. Electro-
static interactions were calculated using the particle mesh Ewald
(PME) method.46 The setup for all simulations was carried out using
the CHARMM47 simulation package version 41b1, and the subse-
quent simulations were conducted using OpenMM with the GPU
support.48

B. t-Distributed stochastic neighbor embedding
(t-SNE) projection

The t-SNE method has widely been applied as a nonlinear
dimensionality reduction method to project high dimensional data
onto the low dimensional surface based on the location of each data
point. To analyze MD simulations of biomacromolecules such as
proteins, the simulation data in high-dimensional Cartesian space
need to be projected onto low-dimensional distribution to abstract
key functional or mechanistic information. In the t-SNE method,
Gaussian functions are used to represent probability distribution of
the high-dimensional data. For example, the probability distribution
for two data points xi and xj in high-dimensional space as neighbors
is calculated as

pji = exp�− �xi−xj�22σi2 �
∑k≠i exp�− �xi−xk�22σi2 �

, (20)

where σ is the width of the Gaussian distribution. Correspond-
ingly, a Student’s t-distribution could be constructed to represent
the probability in a low dimensional space for data points yi and yj
as neighbors,

qij = �1 + �yi − yj�2�−1
∑k≠i �1 + �yi − yk�2�−1 . (21)

The gradient descent method is used to minimize the Kullback-
Leibler (KL) divergence between the low-dimensional Student’s
t-distribution and the high-dimensional Gaussian distribution until
the convergence criterion is reached,

KL(P��Q) =�i≠j pij log
pij
qij

. (22)

The t-SNE method is guaranteed to perform no worse than the
principal component analysis (PCA) method.49

A previous study in our group shows that in MD simulations,
t-SNE could represent minima on the high dimensional free energy
surface correctly.50 In this study, the t-SNE method was applied
for dimensionality reduction of the Cartesian structure and visu-
alization of the DKTN model. The t-SNE implementation in the
scikit-learn package51 was used in this study.

C. Gaussian mixture mode
For good visualization analysis and functional insight, several

metastable states were clustered using the Gaussian Mixture Model
(GMM) before generating microstates. Each metastable state is an
intermediate state representing a stable low energy basin on the
free energy surface. The GMM can characterize different metastable
conformational states by fitting the sample population to Gaus-
sian distributions.52 If a conformational basin distribution has non-
Gaussian tail, more than one component of the mixture is required
to represent it.52 In this case, careful tuning is necessary to determine
the number of components in the GMM so that each conformational
basin distribution satisfies a Gaussian distribution. The number of
components corresponds to the number of metastable states in the
simulation.
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The parameters of the GMM were estimated using the Expec-
tation Maximization (EM) algorithm.53 The EM algorithm con-
tains two steps, named the expectation step (E) and maximization
step (M). First, the parameters of each Gaussian component are
randomly initialized as

Gk = (πk,�k,Σk), (23)

where Gk represents the kth Gaussian distribution and πk, �k, and
Σk represent the weights, the mean, and the covariance matrix of the
kth distribution, respectively.

For the expectation step, the probability for xi assigned to kth
Gaussian distribution as pik could be computed as

pik = p�zi = k|(πj,�j,Σj)Nj=1, xi� = πkN(xi|�k,Σk), (24)

where (πj,�j,Σj)Nj=1 represents all Gaussian distributions, πk is the
weights or prior probability for xi structure belonging to kth Gaus-
sian distribution, andN(xi|�k, Σk) represents the probability of find-
ing xi in the Gaussian distribution with parameter �k and Σk. This
step is also named as “soft assignment.” In GMM, the probabil-
ity belonging to each Gaussian distribution is assigned to each data
point.

After obtaining the soft assignment for each structure belong-
ing to each Gaussian distribution, the parameters for each distribu-
tion can be reevaluated using these soft assignment results. This step
is named as the maximization step because the parameters are max-
imum likelihood estimations. Specifically, knowing the probability
of each structure in each distribution as pik, the parameters for kth
Gaussian distribution is recalculated as

�k = 1
∑N

i=1 γki �
N
i=1 γkixi,

Σk = 1
∑N

i=1 γki �
N
i=1 γki(xi − �k)(xi − �k)T ,

πk = ∑N
i=1 γki
N

, (25)

where γki is the normalized value of kth Gaussian distribution
evaluated at state xi.

As a summary, after recalculating the parameters for each
Gaussian distribution in the maximization step, the soft assign-
ment of each structure for those distributions with new parame-
ters can be recalculated in the expectation step. The expectation
and maximization steps are performed iteratively until reaching
convergence.

D. k -means clustering
After clustering the trajectories into the metastable states

using GMM, a more fine-grained structural model referred to
as microstates was determined using k-means clustering. Each
microstate identified through k-means clustering method unam-
biguously belongs to one metastable state. k-means is widely applied
in many areas for clustering, including for MD simulations.10,54,55
Basically, k-means clustering method can be referred to as a special
case of GMM, where the probability for each structure assigned to

each cluster is either 0 or 1. The covariance matrix for each Gaussian
distribution is zero, which represents an infinitesimal distribution
to a single structure. The k-means clustering method also contains
two steps, named the assignment step and update step. During the
assignment step, based on the previous clustering center for each
cluster, each structure is assigned to the nearest cluster. In the update
step, based on the assignment result, the cluster center is updated as
the average of all structures in the same cluster. These two steps are
iteratively conducted until reaching convergence.

E. Root mean square deviation (RMSD)
The conformational difference is measured by root mean

square deviation (RMSD) regarding a reference structure. For a
molecular structure represented by the Cartesian coordinate, the
RMSD is defined as the following:

RMSD =
����∑N

i=1 �r0i −Uri�2
N

. (26)

The Cartesian coordinate vector r0i is the ith atom in the reference
structure. N is the number of all atoms. U is the rotation matrix to
align the reference structure with the current structure.

IV. RESULTS

A. Construction DKTN model
The metastable states are clustered using GMM on 20 �s of

VVD trajectories, including 10 simulations with 1 �s length start-
ing from the dark conformation and 10 simulations with 1 �s length
starting from the light conformation, respectively. A previous study
suggests that GMM could correctly model the dynamical properties
of the system based on the assumption that the fluctuations around
a particular metastable state satisfy a Gaussian distribution.52 The
number of metastable states required to adequately describe con-
formational statistics within a GMM was determined using cross-
validation.56 The overall quality of the Gaussian mixture model can
be measured as the total probability of structures in the training or
validation sets. As shown in Fig. 2(a), the total probability of the val-
idation sets in GMM increases followed by a steady decrease. The
number of Gaussian components was selected as seven to be well-
separated on the t-SNE projection surface [Fig. 2(b)] while avoid-
ing both underfitting and overfitting. k-Means clustering was con-
ducted with seven clusters [Fig. 2(c)]. It is worth pointing out that
GMM leads to a soft and smooth clustering, and k-means method
leads to hard cutoff between each of the cluster pairs. To check
the structural similarity among metastable states or within each
metastable state, the pair-wised RMSDs between each of the state
pairs are plotted in Fig. 2(d). The high RMSDs in off-diagonal terms
suggest that each metastable state is well-distinguished from other
metastable states. The low RMSDs shown in diagonal terms suggest
that the structures within each metastable state are similar to each
other. Overall, the results suggest that these metastable states are
well-classified.

To establish an adequate DKTN model, the basic building
blocks are the microstates which compose the metastable states
clustered using k-means clustering. Because the distribution can be
diverse, even within the same metastable state, the structures can be
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FIG. 2. Metastable state classification of VVD simulations. (a) Cross-validation using Gaussian mixture model (GMM); (b) clustering results using GMM; (c) clustering results
k-means method; and (d) averaged pair-wised RMSD values of each metastable state pair.

significantly different. For example, as shown in Fig. 2(d), the aver-
aged RMSD in metastable state 7 is 1.5 Å, which suggests higher
structure diversity in this state than other states. To address this
issue, the metastable states are further refined into a collection of
microstates. The number of microstates for each metastable state is
selected to ensure that (1) the averaged RMSD for pair-wised struc-
tures belonging to the same microstate is less than 1.0 Å, (2) the
microstates are well-distinguished on the t-SNE projection surface
(not overlapping with each other), and (3) further clustering does
not decrease the averaged RMSD in those microstates. After further
clustering using the k-means clustering method, seven metastable
states are clustered into 34 microstates, which serve as the basic
building blocks of the DKTN model to construct the transition rate
matrixK . Themicrostates and the averaged pair-wised RMSDs value

in the same microstates belonging to the metastable states are listed
in Table I.

As described in the theory section, the MTT (mean transition
time) between different microstates can be estimated from the sim-
ulation, and the rate constants between different microstates can be
calculated based on the equilibrium distribution and MTT value. As
shown in Fig. 3(a), the equilibrium flux is the product of the rate
constant and the equilibrium distribution of each microstate and is
equivalent to the inverse of theMTT.15 It is clear that the equilibrium
flux between different metastable states is much smaller than the flux
inside each metastable state [Fig. 3(a)], verifying the stability of each
metastable state in the equilibrium. The rate constants within differ-
ent metastable states pairs are illustrated in Fig. 3(b). It should be
noted that the rate constant from microstate a to b is different from

TABLE I. List of microstates and the averaged pair-wised RMSD value for structures belonging to the same microstate from
each metastable state.

Metastable state 1 2 3 4 5 6 7
List of microstates 1–4 5–8 9–12 13–16 17–22 23–28 29–34
Averaged pair-wised RMSD value
for structure in the same microstate 0.681 0.951 0.881 0.983 0.995 0.767 0.981
from each metastable state (Å)
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FIG. 3. Established DKTN model based on microstates: (a) the equilibrium flux between microstates in the equilibrium; (b) the rate constants between microstates. A dashed
line represents the transitions from a microstate with a smaller ID number to a microstate with a larger ID number. A solid line represents opposite transition comparing to the
dashed line. The width of the line represents the magnitude of the reaction rate constant (the bolder and the larger).

the rate constant from b to a. In the following figures (Figs. 3–5),
the point size of each microstate represents the current population
of the microstate. The dashed and solid lines represent the transi-
tions from a microstate with a smaller ID number to a microstate
with a larger ID number and from a microstate with a larger ID
number to a microstate with a smaller ID number, respectively.
The width of the line represents the magnitude of the reaction rate
constant.

The RMSD values with reference to the crystal dark and
light structures were calculated for each structure from the sam-
plings. These values are represented as the darkness of the color
on the t-SNE projection surface to illustrate the deviation for each
microstate from either the dark or light structures of the VVD pro-
tein [Fig. 4(a)]. Specifically, the darker color indicates the smaller
RMSD values. The blue color in Fig. 4(a) represents that the struc-
ture is close to the dark state, and the green color represents that
the structure is close to the light state. The darker color indicates
that a structure is closer to the specific structure, as shown in the
color bar. Overall, microstate 3 has the lowest averaged RMSD to
the crystal dark state structure as 1.08 Å, and microstate 8 has the
lowest averaged RMSD to the crystal light state structure as 1.67 Å.
The distributions for RMSD values of each metastable state regard-
ing the VVD reference dark and light structure are illustrated as
violin plots in Fig. 4(b). Metastable state 1 (comprising microstates
1, 2, 3, and 4) has the lowest averaged RMSD value with refer-
ence to the crystal dark structure as 1.37 Å, and metastable state
2 (comprising microstates 5, 6, 7, and 8) has the lowest averaged
RMSD value with reference to the crystal light structure as 2.14 Å.
Metastable states 1 and 2 with their labeled microstates are plotted
and circled in Fig. 4(c) with their averaged RMSDs to the VVD light
structure (shown in green) and to the VVD dark structure (shown
in blue).

One advantage of the DKTN model is the ability to model the
time evolution of system as it approaches equilibrium. To obtain this

information from the VVD simulations, the ordinary differential
equation of the DKTN model was solved with two different initial
conditions, starting at microstate 3 (VVD dark state) and starting at
microstate 8 (VVD light state), respectively. Throughout the simula-
tions, the concentration of main components steadily decreases until
reaching the equilibrium distributions [Fig. 4(d)]. Because the con-
centration of the initial structure is constantly decreasing, the con-
centration of other components will constantly increase until reach-
ing equilibrium. Therefore, the decrease in the initial microstate
concentration can be regarded as the speed for the whole system
to reach equilibrium. To compare the speed to reach equilibrium
for systems with different initial conditions, the half-mixing time
and the diffusion rate constant were calculated using the effective
reaction rate constant shown in the theory section. The result in
Fig. 4(d) suggests that the system starting from the light confor-
mation can reach equilibrium earlier than the system starting from
the dark conformation. The diffusion half-mixing time and effec-
tive diffusion reaction rate for the simulation starting in microstate
3 are 1.71 �s and 0.38 �s−1, respectively. In comparison, the dif-
fusion half mixing time and effective diffusion reaction rate for
the simulation starting in microstate 8 are 0.71 �s and 0.93 �s−1,
respectively.

After solving the ordinary differential equations for the DKTN
model with different initial conditions (starting from microstate
3 or microstate 8, respectively), the time evolution of each sys-
tem can be calculated analytically. The system evolution toward the
equilibrium starting from microstate 3 (VVD dark state) is illus-
trated in Figs. 5(a)–5(d), representing 0%, 50%, 75.0%, and 99.9% of
the equilibrium, respectively. Similarly, the system evolving to the
equilibrium starting from microstate 8 (VVD light state) is illus-
trated in Figs. 5(e)–5(h), representing 0%, 50%, 75.0%, and 99.9%
of the equilibrium, respectively. Starting from the dark state, it takes
139.54 �s for the system to reach equilibrium, while starting from
the light state, it takes much less time, as 58.24 �s, for the system to
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FIG. 4. Distributions of RMSD values with reference to VVD dark and light structures for microstates and metastable states. (a) The RMSD value distribution on the t-SNE
projection surface. The darker color indicates the smaller RMSD values. (b) Violin plots of the averaged RMSD values of each metastable state with reference to VVD crystal
dark and light structures, respectively. Among all metastable states, state 1 (comprising microstates 1, 2, 3, and 4) has the lowest averaged RMSD value with reference to
the crystal dark structure as 1.37 Å, and state 2 (comprising microstates 5, 6, 7, and 8) has the lowest averaged RMSD value with reference to the crystal light structure as
2.14 Å. (c) Distribution of metastable states illustrated in different colors. The nearest metastable states closest to either the dark or the light structures are highlighted by
circles. Metastable state 1 circled at the right-hand side (comprising microstates 1, 2, 3, and 4) is the closest to the crystal dark structure. Metastable state 2 circled at the
right-hand side (comprising microstates 5, 6, 7, and 8) is the closest to the crystal light structure. The averaged RMSD values of metastable states 1 and 2 with reference to
the crystal dark and light structures are also labeled in color (blue: RMSD to crystal dark structure, green: RMSD to crystal light structure). (d) Diffusion time to equilibrium for
simulations starting from microstate 3 (as VVD dark state) and microstate 8 (as VVD light state), respectively. The plot shows that the system could reach equilibrium faster
when starting from the light state than starting from the dark state.

FIG. 5. The time and distribution of the system starting from microstate 3 (VVD dark state) when evolving to (a) 0%, (b) 50%, (c) 75.0%, and (d) 99.9% of the equilibrium. The
time and distribution of the system starting from microstate 8 (VVD light state) when evolving to (e) 0%, (f) 50%, (g) 75.0%, and (h) 99.9% of the equilibrium.
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TABLE II. Top 10 important microstate state conformational changes for transition between microstates 3 and 8, as well as between metastable states 1 and 2.a

Transition from Transition from
Top 10 conformational metastable state 1 metastable state 2
changes decreased Transition from Transition from (dark state) to (light state) to
effective reaction rate microstate 3 to microstate 8 to metastable state 2 metastable state 1
for certain transition microstate 8 microstate 3 (light state) (dark state)

1 1:17b (23.042%)c 1:17 (23.042%) 1:17 (22.226%) 1:17 (26.302%)
2 3:17 (17.747%) 3:17 (17.747%) 7:21 (19.179%) 2:17 (18.477%)
3 7:21 (17.656%) 7:21 (17.656%) 3:17 (17.013%) 7:21 (18.201%)
4 8:20 (16.792%) 8:20 (16.792%) 2:17 (15.437%) 8:20 (17.305%)
5 2:17 (16.054%) 2:17 (16.054%) 8:20 (12.665%) 3:17 (13.752%)
6 4:17 (9.309%) 4:17 (9.309%) 4:17 (8.912%) 4:17 (9.619%)
7 17:33 (8.740%) 17:33 (8.740%) 17:33 (7.757%) 17:33 (9.035%)
8 3:4 (5.440%) 3:4 (5.440%) 3:4 (5.138%) 8:33 (5.289%)
9 8:33 (5.108%) 8:33 (5.108%) 6:7 (4.319%) 17:21 (4.186%)
10 17:21 (4.044%) 17:21 (4.044%) 17:21 (4.178%) 17:20 (3.966%)

aNumbers in bold indicate the edges with importance higher than 10%.
bThe edge representing microstate transition between microstates A and B (A:B).
cThe importance of a target edge as the decrease in effective reaction rate constant in the DKTN model after removing that edge comparing with the original DKTN model.

FIG. 6. Structural comparison between microstate pairs associated with top five edges. (a) Structural comparison between microstate 17 and microstates 1, 2, and 3,
respectively; (b) structural comparison between microstates 7 and 21 and between microstates 8 and 20. All structure pairs are superimposed, and the residue distance is
measured by alpha carbon distance.

reach the equilibrium. This demonstrates that the light state takes
less time than the dark state to undergo conformational switching.
Videos illustrating the time evolution of systems are provided in the
supplementary material.

B. Characterization of key conformational changes
The importance of individual edges in the DKTN model can

be quantified through the decrease in effective reaction rate con-
stant upon removing certain transitions. Because an individual edge
represents different conformational changes, key conformational
changes for certain transitions could be identified based on the effec-
tive reaction rate constant associated with the corresponding edge.
Table II lists the importance of the top 10 conformational changes
for different transitions.

In Table II, the importance of individual conformational
changes was investigated in two different scenarios: for the

transitions between microstates 3 and 8 and for the transitions
between metastable states 1 and 2. As demonstrated in the earlier
part of this study, the closest microstate and metastable state to

TABLE III. Rate constants among microstates 1, 2, 3, and 17.

Reaction constant (�s−1) 1 2 3 17

1a 0 0.882 0 0.184b
2 0.227 0 0.142 0.031
3 0 0.206 0 0.033
17 0.126 0.084 0.060 0

aEach rate constant corresponds to the edge starting from the state in the first column
and ending in the state in the top row.
bNumbers in bold indicate the direction with highest reaction constant.
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FIG. 7. Comparison of key microstate
structures: (a) microstates 1, 2, 3, and
17; (b) microstates 7, 8, 20, and 21.

the crystal dark structure are microstate 3 (1.08 Å) and metastable
state 1 (1.37 Å), respectively. Likewise, the closest microstate and
metastable state to the crystal light structure are microstate 8
(1.67 Å) and metastable state 2 (2.14 Å), respectively. Because of the
reversibility of the DKTN model which leads to the identical half-
mixing time for the transition frommicrostates 3 to 8 and the transi-
tion frommicrostates 8 to 3, the importance of each edge will also be
the same in both cases, as shown in Table II (columns 2 and 3). How-
ever, for the transitions between metastable states, the importance of
edge will not be the same in reverse directions, as shown in Table II
(columns 4 and 5). For example, removing the edge microstate 1:17
will decrease the effective reaction rate constant from metastable 1
to 2 by 22.2% and from metastable 2 to 1 by 26.3%. The difference
suggests that the conformational change between microstates 1–17
is more important for the conformational switch from the light to
dark structure than for the conformational switch from the dark to
light structure. The top five edges are selected for the following anal-
yses because they are shared by both microstate 3 and 8 transitions
and metastable state 1 and 2 transitions (Table II), and all have more
than 10% importance.

The top five edges include the conformational changes among
microstates between 1 and 17, 2 and 17, 3 and 17, 7 and 21,
and 8 and 20. The structural differences between each microstate
pair associated with each edge are plotted in Fig. 6. Microstate 17
is critical to the conformational changes because the conforma-
tional switches from metastable state 1 (dark structure) have to pass
through microstate 17 in order to reach other metastable states. In
other words, without conformational switching into microstate 17,
the crystal dark conformation will be trapped in metastable state 1.
A detailed structural comparison revealed that the structural dif-
ferences among the key structural changes are in the N-terminal,
Hβ/Iβ loop, and A′α/Aβ loop, highlighting the importance of those
secondary structures.

The structural comparisons of microstates 1, 2, 3, and 17 as
well as 7, 8, 20, and 21 are illustrated in Fig. 6. Microstates 2, 3,
and 17 have a similar A′α/Aβ loop structure, which is significantly
different in microstate 1. Microstates 1, 2, and 17 share similar
Hβ/Iβ loop conformations, which are significantly different from
the one in microstate 3. Microstates 2 and 3 have similar confor-
mations of the N-terminal, which are different from the N-terminal

conformations shared by microstates 1 and 17. Based on the reac-
tion rate constants among microstates 1, 2, 3, and 17 (Table III), it is
revealed that the most probable pathway starting with microstate 3
(dark state) to reach microstate 17 is 3 → 2 → 1 → 17. The direct
conformational changes from microstates 3 to 17 and from 2 to
17 have rather low reaction constants than the one from 1 to 17.
According to the structural comparison in Fig. 7, in the most proba-
ble pathway 3→ 2→ 1→ 17, the first step (3→ 2) is that the Hβ/Iβ
loop shifts without conformational changes in the A′α/Aβ loop or
the N-terminal. In the second step (2 → 1), it is mainly that the
A′α/Aβ loop forms a helixlike structure, which is coupled with the
conformational change in the N-terminal. In the last step (1 → 17),
the A′α/Aβ loop rearranges back to the normal conformation, and
N-terminal changes into a new conformation, finishing the switch
into the light state. Meanwhile, in the light conformational switch
between microstates 8:20 and microstates 7:21, the Hβ/Iβ loop is
also highlighted, which suggests the importance of this secondary
structure.

V. DISCUSSION

A. Advantages and limitations of the DKTN model
The DKTN model goes one step further than a transition net-

work model15 to describe nonequilibrium time dependent popula-
tion evolution. Although the TNmodel alsomodels the system based
on rate theory, it only describes the equilibrium properties such as
equilibrium flux.14 The DKTN model is a more general case of the
TN model. Constructing the DKTN model does not require any
prior knowledge about the reaction rate among states, or the free
energy of each conformational state, for these could be estimated
from the simulations. Different fromMSMs, a large number of short
trajectories are not needed to build the DKTNmodel. Instead, a long
simulation leading to Boltzmann distribution is preferred. Specifi-
cally, the advantages of the DKTNmodel can be categorized into the
following two parts.

1. Fully utilizing the long-time distribution
and short-time transitions

In the TN model,15 the free energy of each state is estimated
based on its distribution in the simulation. The information about
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the transitions among microstates in the simulation is not used in
the TN model. MSMs, on the contrary, do not take advantage of the
distribution information from the long-time samplings. Instead, the
transition probability among microstates is extracted from simula-
tions using a short-time interval referred to as the lag time in MSMs.
It is worth noting that the transition probability matrix in the MSMs
does not always lead to the distribution in the equilibrium with
the Boltzmann distribution estimated from the simulation.27,29 One
explanation accounting for this could be that the Markovian proper-
ties do not hold precisely forMSMs after discretizing the phase space
into microstates.29 Although the theoretical studies have demon-
strated that the MSM approximation can be precise if the coordi-
nates relevant to the slow transitions are fully discretized,26,29 due to
high-dimensionality of biomolecular systems and limitation of the
clustering algorithms, the discretization of microstates is normally
imperfect in practice. Therefore, the transition probability matrix
estimated at the lag time cannot be used to predict the long-time
behavior.29

As a combination of the advantages between the TNmodel and
MSM, the DKTNmodel combines both long-time Boltzmann distri-
butions and short-time transitions. The underlying master equation
provides the basic theoretical framework of the DKTN model for
describing the evolution of the system using chemical kinetics with-
out assuming equilibrium dynamics. It is more reliable to use the
DKTNmodel to predict the long-time behavior from different start-
ing conditions. Due to the detailed balance constraint, the DKTN
model is guaranteed to converge to the Boltzmann distribution
determined by the simulated trajectories.

2. The continuous propagation of dynamical system
without specific lag time

The TN model has been used to describe macromolecular sys-
tem properties in the equilibrium.15 MSM is a dynamical model
describing the propagation of a macromolecular system with the
specific lag time interval within a Markovian approximation. The
propagation of a simulation system is discretized via a specific lag
time. With a longer lag time, transitions among states will be more
likely and the Markovian properties of microstates will be more reli-
able, but this requires longer samplings.23 The MSMs were widely
used to investigate protein dynamical processes including folding24
and allostery.25 To establish an appropriate MSM, an adequate lag
time must be adapted to fulfill the Markovian properties.13,27 How-
ever, the validation of lag time cannot rely on the variational prin-
ciple of MSMs,57,58 which makes the selection of proper lag time
challenging. This issue could be addressed in the DKTN model. As
the underlying theoretical framework of the DKTNmodel, the mas-
ter equation describes the evolution of the system based on chemical
kinetics without assuming a constant transition probability matrix.
Therefore, the DKTN model is different from the MSM in two
aspects: the transition probability matrix and the lag time. The tran-
sition probability matrix, treated as constant in MSM, could change
over time through the transition rate matrix in the DKTN model.
The system propagation is discretized in MSM using a lag time, but
is considered as continuous in the DKTN model. In some sense,
the master equation based DKTN model could also be viewed as a
continuous-time MSM, in which the lag time is no longer needed to
describe system propagation.

Some limitations do exist in the DKTN model but could be
addressed. One is related to the distribution estimated from the
simulation. Because the construction of the DKTN model relies on
the Boltzmann distribution estimated from the simulation, an ade-
quate estimation of distribution is necessary. One way to obtain
more accurate Boltzmann distribution is carrying out independent
long simulations. Other options include advanced sampling tech-
niques to obtain the accurate distribution. For example, replica
exchange molecular dynamics (REMD) is an efficient approach to
obtain Boltzmann distribution for different conformational states
than normal MD simulations.59 Other enhanced sampling tech-
niques can also be combined with the DKTN model to obtain
accurate distribution.60,61

Another limitation arises for estimating the transition time
among different microstates. If a simulation is trapped in some
states, the estimation of transition time associated with states
being less frequently visited may carry less statistical significance.
Although estimation from the trajectories could be used, for more
accurate estimation, the transition path sampling (TPS) method
may be applied to estimate the transition time between any two
microstates. Using TPS to estimate the transition time among
microstates should work well when the number of microstates is
small.

In summary, the DKTN model relies on accurate estimation
of Boltzmann distribution and transition time among microstates.
These two properties were estimated from the simulations of the
model system in this study and can be estimated independently to
establish a DKTN model in other cases. This independence of the
estimations for transition time and Boltzmann distribution provides
flexibility for the application of the DKTN model.

B. Conformational changes identified
for VVD protein

In the current study, the DKTN model was applied on the
VVD protein as the model system to investigate the kinetics of con-
formational changes and identify key allosteric structural changes.
Specifically, local structural changes among microstates 1, 2, 3, and
17, and 7, 8, 20, and 21 are characterized. These local structural
changes could be determining factors for the rate of light-to-dark
state interconversion. Microstate 17 was identified as a “hub” for the
VVD conformational change network. A detailed structure compar-
ison highlights the difference in N-terminal and two loop regions
(A′α/Aβ and Hβ/Iβ) among these microstates. Combining with the
reaction rate constants among these states, a potential transition
pathway from microstates 3 to 17 was proposed as the mechanism
responsible for switching between VVD dark and light states. From
the kinetic point of view, sequential transitions from microstates
3 to 17 through microstates 3, 2, 1, and 17 are more likely than
other possible transition pathways. This dominant pathway reveals
the roles of the A′α/Aβ and Hβ/Iβ loops related to key conforma-
tional changes between the dark and light states. The important role
of the A′α/Aβ loop related to the protein function has been revealed
by many experimental studies. For example, in the A′α/Aβ loop,
the hydrogen bond between Asp68 and Cys71 could be crucial for
conformational changes. Also, Pro66 behaves significantly differ-
ently in the light state vs dark state.34 Recent studies also highlight
this region as a hot spot related to evolutionary adaptation, where
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the residues can facilitate integration of an oxidative stress sensing
mechanism into VVD-like proteins62,63 or differentiate the signaling
mechanism by regulating the evolutionarily selected residues in the
adjacent β-strand.64 The important role of the A′α/Aβ region has
also been identified in recent computational studies. The rearrange-
ment of the A′α/Aβ loop can be the initial step of conformational
switches based on the machine learning results.31 Perturbation on
residue Met55 in the A′α/Aβ loop could lead to significant confor-
mational changes according to our precious study of VVD using the
rigid residue scan (RRS) method.10 The detailed mechanistic func-
tion of the A′α/Aβ loop is finally characterized through the DKTN
model in this study. The importance of Hβ/Iβ loop has also been
revealed. There is one study emphasizing the residue Glu171 in the
Hβ/Iβ loop.65 The Glu171Cysmutation could enhance the cross-link
of the light structure to form a dimer.62 A previous computational
study also suggests that removing the internal dynamics of Glu171
could significantly affect the light state simulation.10 The detailed
mechanistic function of the Hβ/Iβ loop revealed in the DKTNmodel
provides unprecedented insight into the signal transduction of VVD
protein.

VI. CONCLUSION
Adopting the advantage of MSMs, the DKTNmodel was devel-

oped in the current study as a graph representation of a master
equation to study kinetics based onmolecular dynamics simulations.
Because the master equation is a powerful theoretical framework
to describe the time dependent evolution of the state population,
the DKTN model can simulate the nonequilibrium evolution of a
dynamical system starting from any initial conditions. The rate con-
stant for any transition observed in the simulation can be estimated
using this method, providing critical kinetic information regarding
individual states. In addition, the DKTN model can also be used to
identify dominant transition pathways between any state pairs and
to provide potential targets for kinetic regulations of the system.
The application of the DKTN model on a photo-sensitive protein,
vivid (VVD), demonstrated the advantage of this method in unrav-
eling the subtle conformational changes among protein functional
states and providing unprecedented mechanistic insight into key
local conformational changes in VVD related to its functional states.
Meanwhile, because of the similarity between the master equation
and the Kolmogorov equation, the DKTNmodel also represents the
Continuous Time Markov Chain (CTMC) model as a general MSM
model without the lag time or constant transition probability matrix.
In addition, the DKTN model is a more general model than the TN
model, which can be considered as a special case of the DKTNmodel
for the systems in equilibrium. Both advantages and limitations of
the DKTN model are discussed in detail. Overall, the DKTN model
could be an effective computational tool to model complex dynami-
cal processes related to macromolecules such as protein folding and
allostery.

SUPPLEMENTARY MATERIAL

See the supplementary material for a simple four-state dynam-
ical system modeled by DKTN method and the videos illustrating
the time evolution of systems starting from microstates 3 and 8,
respectively.
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